在Tensorflow中训练一个模型后:

如何拯救训练过的模型? 您以后如何恢复这个保存的模型?


当前回答

你也可以在TensorFlow/skflow中查看例子,它提供了保存和恢复方法,可以帮助你轻松地管理模型。它具有一些参数,您还可以控制备份模型的频率。

其他回答

下面是我对这两种基本情况的简单解决方案,这两种情况的不同之处在于您是想从文件加载图形还是在运行时构建它。

这个答案适用于Tensorflow 0.12+(包括1.0)。

在代码中重建图形

储蓄

graph = ... # build the graph
saver = tf.train.Saver()  # create the saver after the graph
with ... as sess:  # your session object
    saver.save(sess, 'my-model')

加载

graph = ... # build the graph
saver = tf.train.Saver()  # create the saver after the graph
with ... as sess:  # your session object
    saver.restore(sess, tf.train.latest_checkpoint('./'))
    # now you can use the graph, continue training or whatever

还从文件中加载图形

当使用这种技术时,确保所有的层/变量都显式地设置了唯一的名称。否则Tensorflow将使名称本身是唯一的,因此它们将不同于存储在文件中的名称。在前一种技术中,这不是问题,因为名称在加载和保存时都以相同的方式“损坏”。

储蓄

graph = ... # build the graph

for op in [ ... ]:  # operators you want to use after restoring the model
    tf.add_to_collection('ops_to_restore', op)

saver = tf.train.Saver()  # create the saver after the graph
with ... as sess:  # your session object
    saver.save(sess, 'my-model')

加载

with ... as sess:  # your session object
    saver = tf.train.import_meta_graph('my-model.meta')
    saver.restore(sess, tf.train.latest_checkpoint('./'))
    ops = tf.get_collection('ops_to_restore')  # here are your operators in the same order in which you saved them to the collection

使用tf.train.Saver保存模型。记住,如果想要减小模型大小,就需要指定var_list。val_list可以是:

特遣部队。trainable_variables或 tf.global_variables。

如果您使用tf.train.MonitoredTrainingSession作为默认会话,则不需要添加额外的代码来执行保存/恢复操作。只需将检查点目录名称传递给MonitoredTrainingSession的构造函数,它将使用会话挂钩来处理这些。

Tensorflow 2.6:它现在变得更简单了,你可以用两种格式保存模型

Saved_model (tf服务兼容) H5或HDF5

以两种格式保存模型:

 from tensorflow.keras import Model
 inputs = tf.keras.Input(shape=(224,224,3))
 y = tf.keras.layers.Conv2D(24, 3, activation='relu', input_shape=input_shape[1:])(inputs)
 outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(y)
 model = tf.keras.Model(inputs=inputs, outputs=outputs)
 model.save("saved_model/my_model") #To Save in Saved_model format
 model.save("my_model.h5") #To save model in H5 or HDF5 format

以两种格式加载模型

import tensorflow as tf
h5_model = tf.keras.models.load_model("my_model.h5") # loading model in h5 format
h5_model.summary()
saved_m = tf.keras.models.load_model("saved_model/my_model") #loading model in saved_model format
saved_m.summary()

在TensorFlow 0.11.0RC1版本中,你可以通过调用tf.train直接保存和恢复你的模型。Export_meta_graph和tf.train。根据https://www.tensorflow.org/programmers_guide/meta_graph的Import_meta_graph。

保存模型

w1 = tf.Variable(tf.truncated_normal(shape=[10]), name='w1')
w2 = tf.Variable(tf.truncated_normal(shape=[20]), name='w2')
tf.add_to_collection('vars', w1)
tf.add_to_collection('vars', w2)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, 'my-model')
# `save` method will call `export_meta_graph` implicitly.
# you will get saved graph files:my-model.meta

恢复模型

sess = tf.Session()
new_saver = tf.train.import_meta_graph('my-model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./'))
all_vars = tf.get_collection('vars')
for v in all_vars:
    v_ = sess.run(v)
    print(v_)