我想性能在这里不太重要,但我忍不住。zip()函数完全复制了两个向量(实际上更像是矩阵转置),只是为了以“python”顺序获取数据。计算具体实现的时间会很有趣:
import math
def cosine_similarity(v1,v2):
"compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
sumxx, sumxy, sumyy = 0, 0, 0
for i in range(len(v1)):
x = v1[i]; y = v2[i]
sumxx += x*x
sumyy += y*y
sumxy += x*y
return sumxy/math.sqrt(sumxx*sumyy)
v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))
Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712
这将经历一次提取一个元素的类似c的噪音,但不进行批量数组复制,并在单个for循环中完成所有重要的工作,并使用单个平方根。
ETA:更新打印调用为函数。(最初的版本是Python 2.7,不是3.3。当前在Python 2.7下运行,使用from __future__ import print_function语句。)无论哪种方式,输出都是相同的。
3.0GHz Core 2 Duo上的CPYthon 2.7.3
>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264
所以,在这种情况下,非python的方式要快3.6倍。