我想计算两个列表之间的余弦相似度,比如说,列表1是dataSetI,列表2是dataSetII。

假设dataSetI是[3,45,7,2],dataSetII是[2,54,13,15]。列表的长度总是相等的。我想将余弦相似度报告为0到1之间的数。

dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]

def cosine_similarity(list1, list2):
  # How to?
  pass

print(cosine_similarity(dataSetI, dataSetII))

当前回答

我想性能在这里不太重要,但我忍不住。zip()函数完全复制了两个向量(实际上更像是矩阵转置),只是为了以“python”顺序获取数据。计算具体实现的时间会很有趣:

import math
def cosine_similarity(v1,v2):
    "compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
    sumxx, sumxy, sumyy = 0, 0, 0
    for i in range(len(v1)):
        x = v1[i]; y = v2[i]
        sumxx += x*x
        sumyy += y*y
        sumxy += x*y
    return sumxy/math.sqrt(sumxx*sumyy)

v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))

Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712

这将经历一次提取一个元素的类似c的噪音,但不进行批量数组复制,并在单个for循环中完成所有重要的工作,并使用单个平方根。

ETA:更新打印调用为函数。(最初的版本是Python 2.7,不是3.3。当前在Python 2.7下运行,使用from __future__ import print_function语句。)无论哪种方式,输出都是相同的。

3.0GHz Core 2 Duo上的CPYthon 2.7.3

>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264

所以,在这种情况下,非python的方式要快3.6倍。

其他回答

我根据问题中的几个答案做了一个基准测试,下面的代码片段被认为是最好的选择:

def dot_product2(v1, v2):
    return sum(map(operator.mul, v1, v2))


def vector_cos5(v1, v2):
    prod = dot_product2(v1, v2)
    len1 = math.sqrt(dot_product2(v1, v1))
    len2 = math.sqrt(dot_product2(v2, v2))
    return prod / (len1 * len2)

结果让我惊讶的是,基于scipy的实现并不是最快的。我分析发现,scipy中的余弦需要大量时间从python列表转换到numpy数组。

使用numpy比较一个数字列表和多个列表(矩阵):

def cosine_similarity(vector,matrix):
   return ( np.sum(vector*matrix,axis=1) / ( np.sqrt(np.sum(matrix**2,axis=1)) * np.sqrt(np.sum(vector**2)) ) )[::-1]

你可以使用SciPy(最简单的方法):

from scipy import spatial

dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
print(1 - spatial.distance.cosine(dataSetI, dataSetII))

注意,space .distance.cos()给出了一个不相似度(距离)值,因此要获得相似度,需要从1中减去该值。

另一种解决方法是自己编写函数,甚至考虑不同长度的列表的可能性:

def cosineSimilarity(v1, v2):
  scalarProduct = moduloV1 = moduloV2 = 0

  if len(v1) > len(v2):
    v2.extend(0 for _ in range(len(v1) - len(v2)))
  else:
    v2.extend(0 for _ in range(len(v2) - len(v1)))

  for i in range(len(v1)):
    scalarProduct += v1[i] * v2[i]
    moduloV1 += v1[i] * v1[i]
    moduloV2 += v2[i] * v2[i]

  return round(scalarProduct/(math.sqrt(moduloV1) * math.sqrt(moduloV2)), 3)

dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
print(cosineSimilarity(dataSetI, dataSetII))

你应该试试SciPy。它有一堆有用的科学例程,例如,“用于数值计算积分、求解微分方程、优化和稀疏矩阵的例程。”它使用超高速优化的NumPy进行数字处理。请参见此处安装。

注意,space .distance.cos计算距离,而不是相似度。所以,你必须用1减去这个值才能得到相似度。

from scipy import spatial

dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)

所有答案都非常适合不能使用NumPy的情况。如果可以的话,这里有另一种方法:

def cosine(x, y):
    dot_products = np.dot(x, y.T)
    norm_products = np.linalg.norm(x) * np.linalg.norm(y)
    return dot_products / (norm_products + EPSILON)

还要记住EPSILON = 1e-07,以确保组织安全。