我想计算两个列表之间的余弦相似度,比如说,列表1是dataSetI,列表2是dataSetII。
假设dataSetI是[3,45,7,2],dataSetII是[2,54,13,15]。列表的长度总是相等的。我想将余弦相似度报告为0到1之间的数。
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
def cosine_similarity(list1, list2):
# How to?
pass
print(cosine_similarity(dataSetI, dataSetII))
另一个版本,如果你有一个场景,你有一个向量列表和一个查询向量,你想要计算查询向量与列表中所有向量的余弦相似度,你可以用下面的方式一次性完成:
>>> import numpy as np
>>> A # list of vectors, shape -> m x n
array([[ 3, 45, 7, 2],
[ 1, 23, 3, 4]])
>>> B # query vector, shape -> 1 x n
array([ 2, 54, 13, 15])
>>> similarity_scores = A.dot(B)/ (np.linalg.norm(A, axis=1) * np.linalg.norm(B))
>>> similarity_scores
array([0.97228425, 0.99026919])
我根据问题中的几个答案做了一个基准测试,下面的代码片段被认为是最好的选择:
def dot_product2(v1, v2):
return sum(map(operator.mul, v1, v2))
def vector_cos5(v1, v2):
prod = dot_product2(v1, v2)
len1 = math.sqrt(dot_product2(v1, v1))
len2 = math.sqrt(dot_product2(v2, v2))
return prod / (len1 * len2)
结果让我惊讶的是,基于scipy的实现并不是最快的。我分析发现,scipy中的余弦需要大量时间从python列表转换到numpy数组。
这里有一个实现,也适用于矩阵。它的行为完全像sklearn余弦相似度:
def cosine_similarity(a, b):
return np.divide(
np.dot(a, b.T),
np.linalg.norm(
a,
axis=1,
keepdims=True
)
@ # matrix multiplication
np.linalg.norm(
b,
axis=1,
keepdims=True
).T
)
符号@代表矩阵乘法。看到
“at”(@)符号在Python中有什么作用?
另一个版本,如果你有一个场景,你有一个向量列表和一个查询向量,你想要计算查询向量与列表中所有向量的余弦相似度,你可以用下面的方式一次性完成:
>>> import numpy as np
>>> A # list of vectors, shape -> m x n
array([[ 3, 45, 7, 2],
[ 1, 23, 3, 4]])
>>> B # query vector, shape -> 1 x n
array([ 2, 54, 13, 15])
>>> similarity_scores = A.dot(B)/ (np.linalg.norm(A, axis=1) * np.linalg.norm(B))
>>> similarity_scores
array([0.97228425, 0.99026919])
如果你碰巧已经在使用PyTorch,你应该使用他们的cosessimilarity实现。
假设有两个n维的numpy。ndarray, v1和v2,即它们的形状都是(n,)。以下是如何获得它们的余弦相似度:
import torch
import torch.nn as nn
cos = nn.CosineSimilarity()
cos(torch.tensor([v1]), torch.tensor([v2])).item()
或者假设有两个numpy。ndarray w1和w2,它们的形状都是(m, n)。下面给你一个余弦相似度列表,每个都是w1中的一行和w2中的相应行之间的余弦相似度:
cos(torch.tensor(w1), torch.tensor(w2)).tolist()
你应该试试SciPy。它有一堆有用的科学例程,例如,“用于数值计算积分、求解微分方程、优化和稀疏矩阵的例程。”它使用超高速优化的NumPy进行数字处理。请参见此处安装。
注意,space .distance.cos计算距离,而不是相似度。所以,你必须用1减去这个值才能得到相似度。
from scipy import spatial
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)