我想计算两个列表之间的余弦相似度,比如说,列表1是dataSetI,列表2是dataSetII。
假设dataSetI是[3,45,7,2],dataSetII是[2,54,13,15]。列表的长度总是相等的。我想将余弦相似度报告为0到1之间的数。
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
def cosine_similarity(list1, list2):
# How to?
pass
print(cosine_similarity(dataSetI, dataSetII))
另一个版本,如果你有一个场景,你有一个向量列表和一个查询向量,你想要计算查询向量与列表中所有向量的余弦相似度,你可以用下面的方式一次性完成:
>>> import numpy as np
>>> A # list of vectors, shape -> m x n
array([[ 3, 45, 7, 2],
[ 1, 23, 3, 4]])
>>> B # query vector, shape -> 1 x n
array([ 2, 54, 13, 15])
>>> similarity_scores = A.dot(B)/ (np.linalg.norm(A, axis=1) * np.linalg.norm(B))
>>> similarity_scores
array([0.97228425, 0.99026919])
import math
from itertools import izip
def dot_product(v1, v2):
return sum(map(lambda x: x[0] * x[1], izip(v1, v2)))
def cosine_measure(v1, v2):
prod = dot_product(v1, v2)
len1 = math.sqrt(dot_product(v1, v1))
len2 = math.sqrt(dot_product(v2, v2))
return prod / (len1 * len2)
你可以在计算后四舍五入:
cosine = format(round(cosine_measure(v1, v2), 3))
如果你想让它真的很短,你可以使用下面的一行代码:
from math import sqrt
from itertools import izip
def cosine_measure(v1, v2):
return (lambda (x, y, z): x / sqrt(y * z))(reduce(lambda x, y: (x[0] + y[0] * y[1], x[1] + y[0]**2, x[2] + y[1]**2), izip(v1, v2), (0, 0, 0)))
你应该试试SciPy。它有一堆有用的科学例程,例如,“用于数值计算积分、求解微分方程、优化和稀疏矩阵的例程。”它使用超高速优化的NumPy进行数字处理。请参见此处安装。
注意,space .distance.cos计算距离,而不是相似度。所以,你必须用1减去这个值才能得到相似度。
from scipy import spatial
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
我根据问题中的几个答案做了一个基准测试,下面的代码片段被认为是最好的选择:
def dot_product2(v1, v2):
return sum(map(operator.mul, v1, v2))
def vector_cos5(v1, v2):
prod = dot_product2(v1, v2)
len1 = math.sqrt(dot_product2(v1, v1))
len2 = math.sqrt(dot_product2(v2, v2))
return prod / (len1 * len2)
结果让我惊讶的是,基于scipy的实现并不是最快的。我分析发现,scipy中的余弦需要大量时间从python列表转换到numpy数组。
你可以使用SciPy(最简单的方法):
from scipy import spatial
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
print(1 - spatial.distance.cosine(dataSetI, dataSetII))
注意,space .distance.cos()给出了一个不相似度(距离)值,因此要获得相似度,需要从1中减去该值。
另一种解决方法是自己编写函数,甚至考虑不同长度的列表的可能性:
def cosineSimilarity(v1, v2):
scalarProduct = moduloV1 = moduloV2 = 0
if len(v1) > len(v2):
v2.extend(0 for _ in range(len(v1) - len(v2)))
else:
v2.extend(0 for _ in range(len(v2) - len(v1)))
for i in range(len(v1)):
scalarProduct += v1[i] * v2[i]
moduloV1 += v1[i] * v1[i]
moduloV2 += v2[i] * v2[i]
return round(scalarProduct/(math.sqrt(moduloV1) * math.sqrt(moduloV2)), 3)
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
print(cosineSimilarity(dataSetI, dataSetII))