我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

可能是最优雅的解决方案(但肯定不是最有效的):

for row in df.values:
    c2 = row[1]
    print(row)
    # ...

for c1, c2 in df.values:
    # ...

注意:

文档明确建议改用.to_numpy()在最坏的情况下,生成的NumPy数组将具有适合所有列的dtype对象首先有充分的理由不使用循环

尽管如此,我认为这个选项应该包含在这里,作为一个(人们应该认为)微不足道的问题的直接解决方案。

其他回答

首先考虑是否真的需要迭代DataFrame中的行。请参阅此答案以了解备选方案。

如果仍然需要迭代行,可以使用以下方法。请注意其他答案中未提及的一些重要注意事项。

DataFrame.iterrows()对于索引,df.iterrows()中的行:打印(行[“c1”],行[“c2”])DataFrame.itertuples()对于df.itertuples中的行(索引=True,名称=“标准”):打印(第c1行,第c2行)

itertples()应该比iterrows()快

但请注意,根据文件(熊猫目前为0.24.2):

iterrows:dtype可能在行与行之间不匹配

因为iterrows为每一行返回一个Series,所以它不会跨行保留数据类型(数据帧的数据类型跨列保留)。为了在遍历行时保留数据类型,最好使用itertples(),它返回值的namedtuples,通常比iterrows()快得多

iterrows:不修改行

您不应该修改正在迭代的内容。这并不能保证在所有情况下都有效。根据数据类型的不同,迭代器返回的是副本而不是视图,写入它不会产生任何影响。

请改用DataFrame.apply():

    new_df = df.apply(lambda x: x * 2, axis = 1)

迭代:

如果列名是无效的Python标识符、重复或以下划线开头,则将重命名为位置名。对于大量列(>255),将返回常规元组。

有关详细信息,请参阅panda迭代文档。

有时,有用的模式是:

# Borrowing @KutalmisB df example
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
# The to_dict call results in a list of dicts
# where each row_dict is a dictionary with k:v pairs of columns:value for that row
for row_dict in df.to_dict(orient='records'):
    print(row_dict)

结果是:

{'col1':1.0, 'col2':0.1}
{'col1':2.0, 'col2':0.2}

最简单的方法是使用apply函数

def print_row(row):
   print row['c1'], row['c2']

df.apply(lambda row: print_row(row), axis=1)

本例使用iloc隔离数据帧中的每个数字。

import pandas as pd

 a = [1, 2, 3, 4]
 b = [5, 6, 7, 8]

 mjr = pd.DataFrame({'a':a, 'b':b})

 size = mjr.shape

 for i in range(size[0]):
     for j in range(size[1]):
         print(mjr.iloc[i, j])

为了循环数据帧中的所有行并方便地使用每行的值,可以将命名元组转换为ndarray。例如:

df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])

在行上循环:

for row in df.itertuples(index=False, name='Pandas'):
    print np.asarray(row)

结果是:

[ 1.   0.1]
[ 2.   0.2]

请注意,如果index=True,则将索引添加为元组的第一个元素,这对于某些应用程序来说可能是不可取的。