我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

可能是最优雅的解决方案(但肯定不是最有效的):

for row in df.values:
    c2 = row[1]
    print(row)
    # ...

for c1, c2 in df.values:
    # ...

注意:

文档明确建议改用.to_numpy()在最坏的情况下,生成的NumPy数组将具有适合所有列的dtype对象首先有充分的理由不使用循环

尽管如此,我认为这个选项应该包含在这里,作为一个(人们应该认为)微不足道的问题的直接解决方案。

其他回答

虽然iterrows()是一个很好的选项,但有时itertples()会快得多:

df = pd.DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})

%timeit [row.a * 2 for idx, row in df.iterrows()]
# => 10 loops, best of 3: 50.3 ms per loop

%timeit [row[1] * 2 for row in df.itertuples()]
# => 1000 loops, best of 3: 541 µs per loop

简言之

如果可能,使用矢量化如果操作无法矢量化,请使用列表综合如果需要一个表示整个行的对象,请使用itert元组如果以上步骤太慢,请尝试快速应用如果速度仍然太慢,试试赛马拉松的套路

基准

可以按如下方式使用df.iloc函数:

for i in range(0, len(df)):
    print(df.iloc[i]['c1'], df.iloc[i]['c2'])

您可以编写自己的迭代器来实现namedtuple

from collections import namedtuple

def myiter(d, cols=None):
    if cols is None:
        v = d.values.tolist()
        cols = d.columns.values.tolist()
    else:
        j = [d.columns.get_loc(c) for c in cols]
        v = d.values[:, j].tolist()

    n = namedtuple('MyTuple', cols)

    for line in iter(v):
        yield n(*line)

这与pd.DataFrame.itertuples直接相当。我的目标是以更高的效率执行相同的任务。


对于具有我的函数的给定数据帧:

list(myiter(df))

[MyTuple(c1=10, c2=100), MyTuple(c1=11, c2=110), MyTuple(c1=12, c2=120)]

或使用pd.DataFrame.itertuples:

list(df.itertuples(index=False))

[Pandas(c1=10, c2=100), Pandas(c1=11, c2=110), Pandas(c1=12, c2=120)]

全面测试我们测试使所有列可用并对列进行子设置。

def iterfullA(d):
    return list(myiter(d))

def iterfullB(d):
    return list(d.itertuples(index=False))

def itersubA(d):
    return list(myiter(d, ['col3', 'col4', 'col5', 'col6', 'col7']))

def itersubB(d):
    return list(d[['col3', 'col4', 'col5', 'col6', 'col7']].itertuples(index=False))

res = pd.DataFrame(
    index=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
    columns='iterfullA iterfullB itersubA itersubB'.split(),
    dtype=float
)

for i in res.index:
    d = pd.DataFrame(np.random.randint(10, size=(i, 10))).add_prefix('col')
    for j in res.columns:
        stmt = '{}(d)'.format(j)
        setp = 'from __main__ import d, {}'.format(j)
        res.at[i, j] = timeit(stmt, setp, number=100)

res.groupby(res.columns.str[4:-1], axis=1).plot(loglog=True);

正如公认的答案所述,在行上应用函数的最快方法是使用矢量化函数,即所谓的NumPy-ufuncs(通用函数)。

但是,当您要应用的函数尚未在NumPy中实现时,应该怎么做?

好吧,使用numba的矢量化装饰器,您可以轻松地直接在Python中创建ufunc,如下所示:

from numba import vectorize, float64

@vectorize([float64(float64)])
def f(x):
    #x is your line, do something with it, and return a float

此函数的文档如下:创建NumPy通用函数