我有一本Python字典,如下所示:

{u'2012-06-08': 388,
 u'2012-06-09': 388,
 u'2012-06-10': 388,
 u'2012-06-11': 389,
 u'2012-06-12': 389,
 u'2012-06-13': 389,
 u'2012-06-14': 389,
 u'2012-06-15': 389,
 u'2012-06-16': 389,
 u'2012-06-17': 389,
 u'2012-06-18': 390,
 u'2012-06-19': 390,
 u'2012-06-20': 390,
 u'2012-06-21': 390,
 u'2012-06-22': 390,
 u'2012-06-23': 390,
 u'2012-06-24': 390,
 u'2012-06-25': 391,
 u'2012-06-26': 391,
 u'2012-06-27': 391,
 u'2012-06-28': 391,
 u'2012-06-29': 391,
 u'2012-06-30': 391,
 u'2012-07-01': 391,
 u'2012-07-02': 392,
 u'2012-07-03': 392,
 u'2012-07-04': 392,
 u'2012-07-05': 392,
 u'2012-07-06': 392}

键是Unicode日期,值是整数。我想通过将日期和它们对应的值作为两个单独的列来将其转换为熊猫数据框架。示例:col1: Dates col2: DateValue(日期仍然是Unicode, datevalues仍然是整数)

     Date         DateValue
0    2012-07-01    391
1    2012-07-02    392
2    2012-07-03    392
.    2012-07-04    392
.    ...           ...
.    ...           ...

任何在这方面的帮助都将不胜感激。我无法在熊猫文档上找到资源来帮助我。

我知道一个解决方案可能是将这个字典中的每个键-值对转换为一个字典,这样整个结构就变成了字典的字典,然后我们可以将每一行单独添加到数据帧中。但是我想知道是否有更简单更直接的方法。

到目前为止,我已经尝试将字典转换为一个系列对象,但这似乎没有保持列之间的关系:

s  = Series(my_dict,index=my_dict.keys())

当前回答

接受一个dict作为参数,并返回一个数据框架,其中dict的键作为索引,值作为列。

def dict_to_df(d):
    df=pd.DataFrame(d.items())
    df.set_index(0, inplace=True)
    return df

其他回答

Pandas具有将字典转换为数据帧的内置功能。

pd.DataFrame.from_dict (dictionaryObject东方=“指数”)

对于你的数据,你可以像下面这样转换:

import pandas as pd
your_dict={u'2012-06-08': 388,
 u'2012-06-09': 388,
 u'2012-06-10': 388,
 u'2012-06-11': 389,
 u'2012-06-12': 389,
 u'2012-06-13': 389,
 u'2012-06-14': 389,
 u'2012-06-15': 389,
 u'2012-06-16': 389,
 u'2012-06-17': 389,
 u'2012-06-18': 390,
 u'2012-06-19': 390,
 u'2012-06-20': 390,
 u'2012-06-21': 390,
 u'2012-06-22': 390,
 u'2012-06-23': 390,
 u'2012-06-24': 390,
 u'2012-06-25': 391,
 u'2012-06-26': 391,
 u'2012-06-27': 391,
 u'2012-06-28': 391,
 u'2012-06-29': 391,
 u'2012-06-30': 391,
 u'2012-07-01': 391,
 u'2012-07-02': 392,
 u'2012-07-03': 392,
 u'2012-07-04': 392,
 u'2012-07-05': 392,
 u'2012-07-06': 392}

your_df_from_dict=pd.DataFrame.from_dict(your_dict,orient='index')
print(your_df_from_dict)

在普通字典上的%timeit结果和pd. datafame .from_dict()是明显的赢家。

%timeit cols_df = pd.DataFrame.from_dict(clu_meta,orient='index',columns=['Columns_fromUser'])
214 µs ± 9.38 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit pd.DataFrame([clu_meta])
943 µs ± 10.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%timeit pd.DataFrame(clu_meta.items(), columns=['Default_colNames', 'Columns_fromUser'])
285 µs ± 7.91 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
d = {'Date': list(yourDict.keys()),'Date_Values': list(yourDict.values())}
df = pandas.DataFrame(data=d)

如果你没有在list()中封装你的dict .keys(),那么你最终会发现你所有的键和值都被放在每一列的每一行中。是这样的:

日期\ 0(2012-06-08, 2012-06-09, 2012-06-10, 2012-06-1… 1(2012-06-08, 2012-06-09, 2012-06-10, 2012-06-1… 2(2012-06-08, 2012-06-09, 2012-06-10, 2012-06-1… 3(2012-06-08, 2012-06-09, 2012-06-10, 2012-06-1… 4(2012-06-08, 2012-06-09, 2012-06-10, 2012-06-1…

但是通过添加list(),结果是这样的:

日期Date_Values 0 2012-06-08 388 1 2012-06-09 388 2 2012-06-10 388 3 2012-06-11 389 4 2012-06-12 389 ...

正如在另一个答案中解释的那样,直接在这里使用pandas.DataFrame()不会像你想的那样起作用。

你可以使用pandas.DataFrame.from_dict with orient='index':

In[7]: pandas.DataFrame.from_dict({u'2012-06-08': 388,
 u'2012-06-09': 388,
 u'2012-06-10': 388,
 u'2012-06-11': 389,
 u'2012-06-12': 389,
 .....
 u'2012-07-05': 392,
 u'2012-07-06': 392}, orient='index', columns=['foo'])
Out[7]: 
            foo
2012-06-08  388
2012-06-09  388
2012-06-10  388
2012-06-11  389
2012-06-12  389
........
2012-07-05  392
2012-07-06  392

在我的情况下,我希望字典的键和值是DataFrame的列和值。所以唯一对我有用的是:

data = {'adjust_power': 'y', 'af_policy_r_submix_prio_adjust': '[null]', 'af_rf_info': '[null]', 'bat_ac': '3500', 'bat_capacity': '75'} 

columns = list(data.keys())
values = list(data.values())
arr_len = len(values)

pd.DataFrame(np.array(values, dtype=object).reshape(1, arr_len), columns=columns)