我有一本Python字典,如下所示:

{u'2012-06-08': 388,
 u'2012-06-09': 388,
 u'2012-06-10': 388,
 u'2012-06-11': 389,
 u'2012-06-12': 389,
 u'2012-06-13': 389,
 u'2012-06-14': 389,
 u'2012-06-15': 389,
 u'2012-06-16': 389,
 u'2012-06-17': 389,
 u'2012-06-18': 390,
 u'2012-06-19': 390,
 u'2012-06-20': 390,
 u'2012-06-21': 390,
 u'2012-06-22': 390,
 u'2012-06-23': 390,
 u'2012-06-24': 390,
 u'2012-06-25': 391,
 u'2012-06-26': 391,
 u'2012-06-27': 391,
 u'2012-06-28': 391,
 u'2012-06-29': 391,
 u'2012-06-30': 391,
 u'2012-07-01': 391,
 u'2012-07-02': 392,
 u'2012-07-03': 392,
 u'2012-07-04': 392,
 u'2012-07-05': 392,
 u'2012-07-06': 392}

键是Unicode日期,值是整数。我想通过将日期和它们对应的值作为两个单独的列来将其转换为熊猫数据框架。示例:col1: Dates col2: DateValue(日期仍然是Unicode, datevalues仍然是整数)

     Date         DateValue
0    2012-07-01    391
1    2012-07-02    392
2    2012-07-03    392
.    2012-07-04    392
.    ...           ...
.    ...           ...

任何在这方面的帮助都将不胜感激。我无法在熊猫文档上找到资源来帮助我。

我知道一个解决方案可能是将这个字典中的每个键-值对转换为一个字典,这样整个结构就变成了字典的字典,然后我们可以将每一行单独添加到数据帧中。但是我想知道是否有更简单更直接的方法。

到目前为止,我已经尝试将字典转换为一个系列对象,但这似乎没有保持列之间的关系:

s  = Series(my_dict,index=my_dict.keys())

当前回答

这是我的工作,因为我想有一个单独的索引列

df = pd.DataFrame.from_dict(some_dict, orient="index").reset_index()
df.columns = ['A', 'B']

其他回答

正如在另一个答案中解释的那样,直接在这里使用pandas.DataFrame()不会像你想的那样起作用。

你可以使用pandas.DataFrame.from_dict with orient='index':

In[7]: pandas.DataFrame.from_dict({u'2012-06-08': 388,
 u'2012-06-09': 388,
 u'2012-06-10': 388,
 u'2012-06-11': 389,
 u'2012-06-12': 389,
 .....
 u'2012-07-05': 392,
 u'2012-07-06': 392}, orient='index', columns=['foo'])
Out[7]: 
            foo
2012-06-08  388
2012-06-09  388
2012-06-10  388
2012-06-11  389
2012-06-12  389
........
2012-07-05  392
2012-07-06  392

我认为你可以在创建字典时对你的数据格式进行一些更改,然后你可以轻松地将它转换为DataFrame:

输入:

a={'Dates':['2012-06-08','2012-06-10'],'Date_value':[388,389]}

输出:

{'Date_value': [388, 389], 'Dates': ['2012-06-08', '2012-06-10']}

输入:

aframe=DataFrame(a)

输出:将是你的数据帧

你只需要在Sublime或Excel中使用一些文本编辑。

将字典的项传递给DataFrame构造函数,并给出列名。之后,解析Date列以获得时间戳值。

注意python 2之间的区别。X和3.x:

在python 2.x中:

df = pd.DataFrame(data.items(), columns=['Date', 'DateValue'])
df['Date'] = pd.to_datetime(df['Date'])

在Python 3中。X:(需要额外的“列表”)

df = pd.DataFrame(list(data.items()), columns=['Date', 'DateValue'])
df['Date'] = pd.to_datetime(df['Date'])

我已经遇到过这种情况几次,并有一个示例字典,我从函数get_max_Path()创建,它返回示例字典:

{2: 0.3097502930247044, 3: 0.4413177909384636, 4: 0.5197224051562838, 5: 0.5717654946470984, 6: 0.6063959031223476, 7: 0.6365209824708223, 8: 0.655918861281035, 9: 0.680844386645206}

为了将其转换为数据框架,我运行了以下命令:

df = pd.DataFrame.from_dict(get_max_path(2), orient = 'index').reset_index()

返回一个简单的带有单独索引的两列数据框架:

索引0 0 2 0.309750 13 0.441318

只需使用f.r ame(columns={'index': ' columnn1 ', 0: 'Column2'}, inplace=True)重命名列即可。

接受一个dict作为参数,并返回一个数据框架,其中dict的键作为索引,值作为列。

def dict_to_df(d):
    df=pd.DataFrame(d.items())
    df.set_index(0, inplace=True)
    return df