我如何检查一个列表是否有任何重复,并返回一个没有重复的新列表?
当前回答
如果列表是有序的,则可以使用以下方法对其进行迭代,跳过重复的值。这对于处理内存消耗低的大列表特别有用,可以避免构建dict或set的成本:
def uniq(iterator):
prev = None
for item in iterator:
if item != prev:
prev = item
yield item
然后:
for item in uniq([1, 1, 3, 5, 5, 6]):
print(item, end=' ')
输出将是:1 3 5 6
要返回一个列表对象,你可以这样做:
>>> print(list(uniq([1, 1, 3, 5, 5, 6])))
[1, 3, 5, 6]
其他回答
这里有很多答案使用set(..)(考虑到元素是可哈希的,这是快速的)或list(它的缺点是它会导致O(n2)算法。
我建议的函数是一个混合的函数:我们使用set(..)来表示可哈希的项,使用list(..)来表示不可哈希的项。此外,它被实现为一个生成器,例如,我们可以限制项目的数量,或做一些额外的过滤。
最后,我们还可以使用一个key参数来指定元素应以何种方式惟一。例如,如果我们想过滤一个字符串列表,这样输出中的每个字符串都有不同的长度,我们可以使用这个。
def uniq(iterable, key=lambda x: x):
seens = set()
seenl = []
for item in iterable:
k = key(item)
try:
seen = k in seens
except TypeError:
seen = k in seenl
if not seen:
yield item
try:
seens.add(k)
except TypeError:
seenl.append(k)
我们现在可以这样使用:
>>> list(uniq(["apple", "pear", "banana", "lemon"], len))
['apple', 'pear', 'banana']
>>> list(uniq(["apple", "pear", "lemon", "banana"], len))
['apple', 'pear', 'banana']
>>> list(uniq(["apple", "pear", {}, "lemon", [], "banana"], len))
['apple', 'pear', {}, 'banana']
>>> list(uniq(["apple", "pear", {}, "lemon", [], "banana"]))
['apple', 'pear', {}, 'lemon', [], 'banana']
>>> list(uniq(["apple", "pear", {}, "lemon", {}, "banana"]))
['apple', 'pear', {}, 'lemon', 'banana']
因此,它是一个唯一性过滤器,可以在任何可迭代对象上工作并过滤出唯一性对象,而不管这些唯一性对象是否可哈希。
它做了一个假设:如果一个对象是可哈希的,而另一个对象不是,这两个对象永远不相等。严格地说,这是可能发生的,尽管它是非常罕见的。
在这个答案中,将有两个部分:两个唯一的解,和一个特定解的速度图。
删除重复项
这些答案大多只删除可哈希的重复项,但这个问题并不意味着它不需要可哈希项,这意味着我将提供一些不需要可哈希项的解决方案。
集合。Counter是标准库中的一个功能强大的工具,可以完美地实现这一点。只有另一种解决方案里面有Counter。然而,该解决方案也仅限于可哈希键。
为了在Counter中允许不可哈希键,我创建了一个Container类,它将尝试获取对象的默认哈希函数,但如果失败,它将尝试其标识函数。它还定义了一个eq和一个散列方法。这应该足以在我们的解决方案中允许不可散列项。不可哈希对象将被视为可哈希对象。但是,这个哈希函数对不可哈希对象使用identity,这意味着两个相等的不可哈希对象将不起作用。我建议您重写它,并将其更改为使用等效可变类型的哈希(例如,如果my_list是一个列表,则使用hash(tuple(my_list))。
我也得到了两个解。另一个解决方案是保持条目的顺序,使用OrderedDict和Counter的子类,命名为'OrderedCounter'。下面是函数:
from collections import OrderedDict, Counter
class Container:
def __init__(self, obj):
self.obj = obj
def __eq__(self, obj):
return self.obj == obj
def __hash__(self):
try:
return hash(self.obj)
except:
return id(self.obj)
class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered'
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))
def __reduce__(self):
return self.__class__, (OrderedDict(self),)
def remd(sequence):
cnt = Counter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
def oremd(sequence):
cnt = OrderedCounter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
Remd为非有序排序,oremd为有序排序。你可以清楚地看出哪个更快,但我还是会解释的。非有序排序稍微快一些,因为它不存储条目的顺序。
现在,我还想展示每个答案的速度比较。我现在就做。
哪个函数是最快的?
为了去除重复,我从几个答案中收集了10个函数。我计算了每个函数的速度,并使用matplotlib.pyplot将其放入一个图形中。
我把它分成三轮画图。hashable是任何可以哈希的对象,unhashable是任何不能哈希的对象。有序序列是保持有序的序列,无序序列不保持有序。现在,这里有更多的术语:
Unordered Hashable适用于任何删除重复项的方法,它不一定要保持顺序。它不需要为不可hashables工作,但它可以。
Ordered Hashable适用于任何保持列表中元素顺序的方法,但它不一定适用于unhashables,但它可以。
Ordered Unhashable是任何保持列表中项目顺序的方法,适用于unhashables。
y轴是花费的秒数。
x轴是函数作用的数字。
我用以下理解为无序哈希和有序哈希生成序列:[list(range(x)) + list(range(x)) for x in range(0,1000,10)]
对于有序的不可哈希对象:[[list(range(y)) + list(range(y)) For y in range(x)] For x in range(0,1000,10)]
请注意,在范围内有一个步骤,因为如果没有它,这将花费10倍的时间。也因为在我个人看来,我认为它可能看起来更容易阅读。
还要注意,图例上的键是我试图猜测的函数实现中最重要的部分。至于哪个功能是最好的还是最差的呢?图表说明了一切。
解决了这个问题,下面是图表。
无序Hashables
(放大)
命令Hashables
(放大)
命令Unhashables
(放大)
Python的魔力内置类型
在python中,仅通过python的内置类型就可以很容易地处理这样复杂的情况。
让我告诉你怎么做!
方法一:一般情况
方法(1行代码)删除重复的元素在列表中仍然保持排序顺序
line = [1, 2, 3, 1, 2, 5, 6, 7, 8]
new_line = sorted(set(line), key=line.index) # remove duplicated element
print(new_line)
你会得到结果的
[1, 2, 3, 5, 6, 7, 8]
方法二:特殊情况
TypeError: unhashable type: 'list'
处理不可哈希的特殊情况(3行代码)
line=[['16.4966155686595', '-27.59776154691', '52.3786295521147']
,['16.4966155686595', '-27.59776154691', '52.3786295521147']
,['17.6508629295574', '-27.143305738671', '47.534955022564']
,['17.6508629295574', '-27.143305738671', '47.534955022564']
,['18.8051102904552', '-26.688849930432', '42.6912804930134']
,['18.8051102904552', '-26.688849930432', '42.6912804930134']
,['19.5504702331098', '-26.205884452727', '37.7709192714727']
,['19.5504702331098', '-26.205884452727', '37.7709192714727']
,['20.2929416861422', '-25.722717575124', '32.8500163147157']
,['20.2929416861422', '-25.722717575124', '32.8500163147157']]
tuple_line = [tuple(pt) for pt in line] # convert list of list into list of tuple
tuple_new_line = sorted(set(tuple_line),key=tuple_line.index) # remove duplicated element
new_line = [list(t) for t in tuple_new_line] # convert list of tuple into list of list
print (new_line)
你会得到这样的结果:
[
['16.4966155686595', '-27.59776154691', '52.3786295521147'],
['17.6508629295574', '-27.143305738671', '47.534955022564'],
['18.8051102904552', '-26.688849930432', '42.6912804930134'],
['19.5504702331098', '-26.205884452727', '37.7709192714727'],
['20.2929416861422', '-25.722717575124', '32.8500163147157']
]
因为元组是可哈希的,你可以很容易地在列表和元组之间转换数据
可以使用Python set或dict.fromkeys()方法删除重复项。 dict.fromkeys()方法将一个列表转换为一个字典。字典不能包含重复的值,因此dict.fromkeys()将返回只有唯一值的字典。 集,像字典一样,不能包含重复的值。如果将列表转换为集合,则删除所有重复项。
方法一:幼稚法
mylist = [5, 10, 15, 20, 3, 15, 25, 20, 30, 10, 100]
uniques = []
for i in mylist:
if i not in uniques:
uniques.append(i)
print(uniques)
方法二:使用set()
mylist = [5, 10, 15, 20, 3, 15, 25, 20, 30, 10, 100]
myset = set(mylist)
print(list(myset))
今天,一位同事将接受的答案作为他的代码的一部分发给了我进行代码审阅。 虽然我很欣赏这个问题答案的优雅,但我对他的表现并不满意。 我尝试过这个解决方案(我使用set来减少查找时间)
def ordered_set(in_list):
out_list = []
added = set()
for val in in_list:
if not val in added:
out_list.append(val)
added.add(val)
return out_list
为了比较效率,我使用了100个整数的随机样本,其中62个是唯一的
from random import randint
x = [randint(0,100) for _ in xrange(100)]
In [131]: len(set(x))
Out[131]: 62
这是测量结果
In [129]: %timeit list(OrderedDict.fromkeys(x))
10000 loops, best of 3: 86.4 us per loop
In [130]: %timeit ordered_set(x)
100000 loops, best of 3: 15.1 us per loop
如果把set从解中移除会发生什么?
def ordered_set(inlist):
out_list = []
for val in inlist:
if not val in out_list:
out_list.append(val)
return out_list
结果并不像OrderedDict那样糟糕,但仍然是原始解决方案的3倍多
In [136]: %timeit ordered_set(x)
10000 loops, best of 3: 52.6 us per loop
推荐文章
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 使嵌套JavaScript对象平放/不平放的最快方法
- 如何获取在Python中捕获的异常的名称?
- 第一次出现的值大于现有值的Numpy
- 大的Ө符号到底代表什么?
- 如何从Python函数中返回两个值?
- 前一个月的Python日期
- Python中方括号括起来的列表和圆括号括起来的列表有什么区别?
- Python日志记录不输出任何东西
- 堆与二叉搜索树(BST)
- 每n秒运行特定代码
- 给定一个数字数组,返回所有其他数字的乘积的数组(不除法)