我如何检查一个列表是否有任何重复,并返回一个没有重复的新列表?
当前回答
我已将各种建议与perfplot进行了比较。事实证明,如果输入数组没有重复的元素,所有方法的速度或多或少都一样快,与输入数据是Python列表还是NumPy数组无关。
如果输入数组很大,但只包含一个唯一元素,则set、dict和np。如果输入数据是一个列表,唯一方法是常量时间的。如果是NumPy数组,np。Unique比其他选项快10倍。
让我有点惊讶的是这些也不是常时间运算。
代码重现图:
import perfplot
import numpy as np
import matplotlib.pyplot as plt
def setup_list(n):
# return list(np.random.permutation(np.arange(n)))
return [0] * n
def setup_np_array(n):
# return np.random.permutation(np.arange(n))
return np.zeros(n, dtype=int)
def list_set(data):
return list(set(data))
def numpy_unique(data):
return np.unique(data)
def list_dict(data):
return list(dict.fromkeys(data))
b = perfplot.bench(
setup=[
setup_list,
setup_list,
setup_list,
setup_np_array,
setup_np_array,
setup_np_array,
],
kernels=[list_set, numpy_unique, list_dict, list_set, numpy_unique, list_dict],
labels=[
"list(set(lst))",
"np.unique(lst)",
"list(dict(lst))",
"list(set(arr))",
"np.unique(arr)",
"list(dict(arr))",
],
n_range=[2 ** k for k in range(23)],
xlabel="len(array)",
equality_check=None,
)
# plt.title("input array = [0, 1, 2,..., n]")
plt.title("input array = [0, 0,..., 0]")
b.save("out.png")
b.show()
其他回答
有时你需要删除重复的项目,而不需要创建新的列表。例如,列表很大,或者将其作为影子副本保存
from collections import Counter
cntDict = Counter(t)
for item,cnt in cntDict.items():
for _ in range(cnt-1):
t.remove(item)
在Python 2.7中,从可迭代对象中删除重复项同时保持其原始顺序的新方法是:
>>> from collections import OrderedDict
>>> list(OrderedDict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
在Python 3.5中,OrderedDict有一个C实现。我的计时显示,这是Python 3.5的各种方法中最快和最短的。
在Python 3.6中,常规字典变得既有序又紧凑。(此特性适用于CPython和PyPy,但在其他实现中可能不存在)。这为我们提供了一种新的最快的方法,在保持秩序的同时减少数据:
>>> list(dict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
在Python 3.7中,常规字典保证在所有实现中都是有序的。所以,最短最快的解决方案是:
>>> list(dict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
我认为转换为set是删除重复的最简单的方法:
list1 = [1,2,1]
list1 = list(set(list1))
print list1
有许多其他的答案提出了不同的方法,但它们都是批处理操作,其中一些会抛弃原始的顺序。这可能是可以的,这取决于你需要什么,但如果你想在每个值的第一个实例的顺序上迭代值,并且你想要立即删除重复的值而不是一次性删除,你可以使用这个生成器:
def uniqify(iterable):
seen = set()
for item in iterable:
if item not in seen:
seen.add(item)
yield item
这将返回一个生成器/迭代器,因此您可以在任何可以使用迭代器的地方使用它。
for unique_item in uniqify([1, 2, 3, 4, 3, 2, 4, 5, 6, 7, 6, 8, 8]):
print(unique_item, end=' ')
print()
输出:
1 2 3 4 5 6 7 8
如果你想要一个列表,你可以这样做:
unique_list = list(uniqify([1, 2, 3, 4, 3, 2, 4, 5, 6, 7, 6, 8, 8]))
print(unique_list)
输出:
[1, 2, 3, 4, 5, 6, 7, 8]
在这个答案中,将有两个部分:两个唯一的解,和一个特定解的速度图。
删除重复项
这些答案大多只删除可哈希的重复项,但这个问题并不意味着它不需要可哈希项,这意味着我将提供一些不需要可哈希项的解决方案。
集合。Counter是标准库中的一个功能强大的工具,可以完美地实现这一点。只有另一种解决方案里面有Counter。然而,该解决方案也仅限于可哈希键。
为了在Counter中允许不可哈希键,我创建了一个Container类,它将尝试获取对象的默认哈希函数,但如果失败,它将尝试其标识函数。它还定义了一个eq和一个散列方法。这应该足以在我们的解决方案中允许不可散列项。不可哈希对象将被视为可哈希对象。但是,这个哈希函数对不可哈希对象使用identity,这意味着两个相等的不可哈希对象将不起作用。我建议您重写它,并将其更改为使用等效可变类型的哈希(例如,如果my_list是一个列表,则使用hash(tuple(my_list))。
我也得到了两个解。另一个解决方案是保持条目的顺序,使用OrderedDict和Counter的子类,命名为'OrderedCounter'。下面是函数:
from collections import OrderedDict, Counter
class Container:
def __init__(self, obj):
self.obj = obj
def __eq__(self, obj):
return self.obj == obj
def __hash__(self):
try:
return hash(self.obj)
except:
return id(self.obj)
class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered'
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))
def __reduce__(self):
return self.__class__, (OrderedDict(self),)
def remd(sequence):
cnt = Counter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
def oremd(sequence):
cnt = OrderedCounter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
Remd为非有序排序,oremd为有序排序。你可以清楚地看出哪个更快,但我还是会解释的。非有序排序稍微快一些,因为它不存储条目的顺序。
现在,我还想展示每个答案的速度比较。我现在就做。
哪个函数是最快的?
为了去除重复,我从几个答案中收集了10个函数。我计算了每个函数的速度,并使用matplotlib.pyplot将其放入一个图形中。
我把它分成三轮画图。hashable是任何可以哈希的对象,unhashable是任何不能哈希的对象。有序序列是保持有序的序列,无序序列不保持有序。现在,这里有更多的术语:
Unordered Hashable适用于任何删除重复项的方法,它不一定要保持顺序。它不需要为不可hashables工作,但它可以。
Ordered Hashable适用于任何保持列表中元素顺序的方法,但它不一定适用于unhashables,但它可以。
Ordered Unhashable是任何保持列表中项目顺序的方法,适用于unhashables。
y轴是花费的秒数。
x轴是函数作用的数字。
我用以下理解为无序哈希和有序哈希生成序列:[list(range(x)) + list(range(x)) for x in range(0,1000,10)]
对于有序的不可哈希对象:[[list(range(y)) + list(range(y)) For y in range(x)] For x in range(0,1000,10)]
请注意,在范围内有一个步骤,因为如果没有它,这将花费10倍的时间。也因为在我个人看来,我认为它可能看起来更容易阅读。
还要注意,图例上的键是我试图猜测的函数实现中最重要的部分。至于哪个功能是最好的还是最差的呢?图表说明了一切。
解决了这个问题,下面是图表。
无序Hashables
(放大)
命令Hashables
(放大)
命令Unhashables
(放大)