我如何检查一个列表是否有任何重复,并返回一个没有重复的新列表?
当前回答
减少变量与顺序保存:
假设我们有一个列表:
l = [5, 6, 6, 1, 1, 2, 2, 3, 4]
减少变体(无效):
>>> reduce(lambda r, v: v in r and r or r + [v], l, [])
[5, 6, 1, 2, 3, 4]
5倍快,但更复杂
>>> reduce(lambda r, v: v in r[1] and r or (r[0].append(v) or r[1].add(v)) or r, l, ([], set()))[0]
[5, 6, 1, 2, 3, 4]
解释:
default = (list(), set())
# user list to keep order
# use set to make lookup faster
def reducer(result, item):
if item not in result[1]:
result[0].append(item)
result[1].add(item)
return result
reduce(reducer, l, default)[0]
其他回答
检查字符串'a'和'b'
clean_list = []
for ele in raw_list:
if 'b' in ele or 'a' in ele:
pass
else:
clean_list.append(ele)
一个更好的方法是,
import pandas as pd
myList = [1, 2, 3, 1, 2, 5, 6, 7, 8]
cleanList = pd.Series(myList).drop_duplicates().tolist()
print(cleanList)
#> [1, 2, 3, 5, 6, 7, 8]
秩序得以维持。
我已将各种建议与perfplot进行了比较。事实证明,如果输入数组没有重复的元素,所有方法的速度或多或少都一样快,与输入数据是Python列表还是NumPy数组无关。
如果输入数组很大,但只包含一个唯一元素,则set、dict和np。如果输入数据是一个列表,唯一方法是常量时间的。如果是NumPy数组,np。Unique比其他选项快10倍。
让我有点惊讶的是这些也不是常时间运算。
代码重现图:
import perfplot
import numpy as np
import matplotlib.pyplot as plt
def setup_list(n):
# return list(np.random.permutation(np.arange(n)))
return [0] * n
def setup_np_array(n):
# return np.random.permutation(np.arange(n))
return np.zeros(n, dtype=int)
def list_set(data):
return list(set(data))
def numpy_unique(data):
return np.unique(data)
def list_dict(data):
return list(dict.fromkeys(data))
b = perfplot.bench(
setup=[
setup_list,
setup_list,
setup_list,
setup_np_array,
setup_np_array,
setup_np_array,
],
kernels=[list_set, numpy_unique, list_dict, list_set, numpy_unique, list_dict],
labels=[
"list(set(lst))",
"np.unique(lst)",
"list(dict(lst))",
"list(set(arr))",
"np.unique(arr)",
"list(dict(arr))",
],
n_range=[2 ** k for k in range(23)],
xlabel="len(array)",
equality_check=None,
)
# plt.title("input array = [0, 1, 2,..., n]")
plt.title("input array = [0, 0,..., 0]")
b.save("out.png")
b.show()
如果你不关心顺序,想要一些不同于上面建议的python方式(也就是说,它可以在面试中使用),那么:
def remove_dup(arr):
size = len(arr)
j = 0 # To store index of next unique element
for i in range(0, size-1):
# If current element is not equal
# to next element then store that
# current element
if(arr[i] != arr[i+1]):
arr[j] = arr[i]
j+=1
arr[j] = arr[size-1] # Store the last element as whether it is unique or repeated, it hasn't stored previously
return arr[0:j+1]
if __name__ == '__main__':
arr = [10, 10, 1, 1, 1, 3, 3, 4, 5, 6, 7, 8, 8, 9]
print(remove_dup(sorted(arr)))
时间复杂度:O(n)
辅助空间:O(n)
参考:http://www.geeksforgeeks.org/remove-duplicates-sorted-array/
另一种做法:
>>> seq = [1,2,3,'a', 'a', 1,2]
>> dict.fromkeys(seq).keys()
['a', 1, 2, 3]
推荐文章
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 使嵌套JavaScript对象平放/不平放的最快方法
- 如何获取在Python中捕获的异常的名称?
- 第一次出现的值大于现有值的Numpy
- 大的Ө符号到底代表什么?
- 如何从Python函数中返回两个值?
- 前一个月的Python日期
- Python中方括号括起来的列表和圆括号括起来的列表有什么区别?
- Python日志记录不输出任何东西
- 堆与二叉搜索树(BST)
- 每n秒运行特定代码
- 给定一个数字数组,返回所有其他数字的乘积的数组(不除法)