在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

更多的建议:

Avoid I/O: Any I/O (disk, network, ports, etc.) is always going to be far slower than any code that is performing calculations, so get rid of any I/O that you do not strictly need. Move I/O up-front: Load up all the data you are going to need for a calculation up-front, so that you do not have repeated I/O waits within the core of a critical algorithm (and maybe as a result repeated disk seeks, when loading all the data in one hit may avoid seeking). Delay I/O: Do not write out your results until the calculation is over, store them in a data structure and then dump that out in one go at the end when the hard work is done. Threaded I/O: For those daring enough, combine 'I/O up-front' or 'Delay I/O' with the actual calculation by moving the loading into a parallel thread, so that while you are loading more data you can work on a calculation on the data you already have, or while you calculate the next batch of data you can simultaneously write out the results from the last batch.

其他回答

你在什么硬件上运行?您是否可以使用特定于平台化的优化(如向量化)? 你能找到更好的编译器吗?比如从GCC换成Intel? 你能让你的算法并行运行吗? 可以通过重新组织数据来减少缓存丢失吗? 可以禁用断言吗? 对编译器和平台进行微优化。在if/else语句中,把最常见的语句放在前面

虽然我喜欢Mike Dunlavey的回答,但事实上这是一个很好的答案,并且有支持的例子,我认为它可以简单地表达出来:

首先找出哪些事情最耗费时间,并了解原因。

它是时间消耗的识别过程,可以帮助您了解必须在哪里改进算法。这是我能找到的唯一一个全面的语言不可知论答案,这个问题已经被认为是完全优化的。同时假设您希望在追求速度的过程中独立于体系结构。

因此,虽然算法可能被优化了,但它的实现可能没有。标识可以让您知道哪个部分是哪个部分:算法或实现。所以,占用时间最多的就是你审查的首选对象。但是既然你说你想把最后的%挤出来,你可能还想检查一下较小的部分,那些你一开始没有仔细检查过的部分。

最后,对实现相同解决方案的不同方法的性能数据进行一些尝试和错误,或者可能的不同算法,可以带来有助于识别浪费时间和节省时间的见解。

HPH, asoudmove。

由于许多性能问题都涉及数据库问题,因此在调优查询和存储过程时,我将介绍一些需要注意的具体问题。

避免在大多数数据库中使用游标。也要避免循环。大多数时候,数据访问应该基于设置,而不是逐条记录处理。这包括当您希望一次插入1,000,000条记录时,不要重用单个记录存储过程。

不要使用select *,只返回实际需要的字段。如果存在任何连接,则尤其如此,因为连接字段将重复,从而在服务器和网络上造成不必要的负载。

避免使用相关的子查询。使用连接(尽可能包括到派生表的连接)(我知道这对于Microsoft SQL Server是正确的,但是在使用不同的后端时测试建议)。

索引,索引,索引。如果适用于您的数据库,请更新这些统计数据。

使查询sargable。这意味着避免一些不可能使用索引的事情,例如在like子句的第一个字符中使用通配符,或在join中的函数中使用通配符,或作为where语句的左侧部分。

使用正确的数据类型。在日期字段上进行日期计算要比尝试将字符串数据类型转换为日期数据类型然后进行计算快得多。

永远不要在触发器中放入任何形式的循环!

大多数数据库都有一种方法来检查如何执行查询。在Microsoft SQL Server中,这被称为执行计划。先检查一下,看看问题出在哪里。

在确定需要优化的内容时,考虑查询运行的频率以及运行所需的时间。有时,对一个每天运行数百万次的查询稍作调整,可以获得比删除一个月只运行一次的long_running查询更多的性能。

使用某种分析器工具来找出发送到数据库和从数据库发送的内容。我记得过去有一次,我们不知道为什么页面加载这么慢,而存储过程却很快,并通过分析发现网页多次而不是一次地请求查询。

剖析器还将帮助您找到谁在阻止谁。一些单独运行时执行很快的查询可能会因为来自其他查询的锁而变得非常慢。

向它扔更多的硬件!

我花了一些时间优化在低带宽和长延迟网络(例如卫星、远程、离岸)上运行的客户端/服务器业务系统,并能够通过相当可重复的过程实现一些显著的性能改进。

Measure: Start by understanding the network's underlying capacity and topology. Talking to the relevant networking people in the business, and make use of basic tools such as ping and traceroute to establish (at a minimum) the network latency from each client location, during typical operational periods. Next, take accurate time measurements of specific end user functions that display the problematic symptoms. Record all of these measurements, along with their locations, dates and times. Consider building end-user "network performance testing" functionality into your client application, allowing your power users to participate in the process of improvement; empowering them like this can have a huge psychological impact when you're dealing with users frustrated by a poorly performing system. Analyze: Using any and all logging methods available to establish exactly what data is being transmitted and received during the execution of the affected operations. Ideally, your application can capture data transmitted and received by both the client and the server. If these include timestamps as well, even better. If sufficient logging isn't available (e.g. closed system, or inability to deploy modifications into a production environment), use a network sniffer and make sure you really understand what's going on at the network level. Cache: Look for cases where static or infrequently changed data is being transmitted repetitively and consider an appropriate caching strategy. Typical examples include "pick list" values or other "reference entities", which can be surprisingly large in some business applications. In many cases, users can accept that they must restart or refresh the application to update infrequently updated data, especially if it can shave significant time from the display of commonly used user interface elements. Make sure you understand the real behaviour of the caching elements already deployed - many common caching methods (e.g. HTTP ETag) still require a network round-trip to ensure consistency, and where network latency is expensive, you may be able to avoid it altogether with a different caching approach. Parallelise: Look for sequential transactions that don't logically need to be issued strictly sequentially, and rework the system to issue them in parallel. I dealt with one case where an end-to-end request had an inherent network delay of ~2s, which was not a problem for a single transaction, but when 6 sequential 2s round trips were required before the user regained control of the client application, it became a huge source of frustration. Discovering that these transactions were in fact independent allowed them to be executed in parallel, reducing the end-user delay to very close to the cost of a single round trip. Combine: Where sequential requests must be executed sequentially, look for opportunities to combine them into a single more comprehensive request. Typical examples include creation of new entities, followed by requests to relate those entities to other existing entities. Compress: Look for opportunities to leverage compression of the payload, either by replacing a textual form with a binary one, or using actual compression technology. Many modern (i.e. within a decade) technology stacks support this almost transparently, so make sure it's configured. I have often been surprised by the significant impact of compression where it seemed clear that the problem was fundamentally latency rather than bandwidth, discovering after the fact that it allowed the transaction to fit within a single packet or otherwise avoid packet loss and therefore have an outsize impact on performance. Repeat: Go back to the beginning and re-measure your operations (at the same locations and times) with the improvements in place, record and report your results. As with all optimisation, some problems may have been solved exposing others that now dominate.

In the steps above, I focus on the application related optimisation process, but of course you must ensure the underlying network itself is configured in the most efficient manner to support your application too. Engage the networking specialists in the business and determine if they're able to apply capacity improvements, QoS, network compression, or other techniques to address the problem. Usually, they will not understand your application's needs, so it's important that you're equipped (after the Analyse step) to discuss it with them, and also to make the business case for any costs you're going to be asking them to incur. I've encountered cases where erroneous network configuration caused the applications data to be transmitted over a slow satellite link rather than an overland link, simply because it was using a TCP port that was not "well known" by the networking specialists; obviously rectifying a problem like this can have a dramatic impact on performance, with no software code or configuration changes necessary at all.