在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

更多的建议:

Avoid I/O: Any I/O (disk, network, ports, etc.) is always going to be far slower than any code that is performing calculations, so get rid of any I/O that you do not strictly need. Move I/O up-front: Load up all the data you are going to need for a calculation up-front, so that you do not have repeated I/O waits within the core of a critical algorithm (and maybe as a result repeated disk seeks, when loading all the data in one hit may avoid seeking). Delay I/O: Do not write out your results until the calculation is over, store them in a data structure and then dump that out in one go at the end when the hard work is done. Threaded I/O: For those daring enough, combine 'I/O up-front' or 'Delay I/O' with the actual calculation by moving the loading into a parallel thread, so that while you are loading more data you can work on a calculation on the data you already have, or while you calculate the next batch of data you can simultaneously write out the results from the last batch.

其他回答

不像之前的答案那么深入或复杂,但下面是: (这些更多是初级/中级水平)

明显:干 向后运行循环,所以总是与0比较,而不是与变量比较 尽可能使用位操作符 将重复的代码分解为模块/函数 缓存对象 局部变量具有轻微的性能优势 尽可能限制字符串操作

添加这个答案,因为我没有看到它包括在所有其他。

最小化类型和符号之间的隐式转换:

这至少适用于C/ c++,即使你已经认为你已经摆脱了转换——有时测试在需要性能的函数周围添加编译器警告是很好的,特别是注意循环中的转换。

特定于GCC:您可以通过在代码周围添加一些冗长的pragmas来测试这一点,

#ifdef __GNUC__
#  pragma GCC diagnostic push
#  pragma GCC diagnostic error "-Wsign-conversion"
#  pragma GCC diagnostic error "-Wdouble-promotion"
#  pragma GCC diagnostic error "-Wsign-compare"
#  pragma GCC diagnostic error "-Wconversion"
#endif

/* your code */

#ifdef __GNUC__
#  pragma GCC diagnostic pop
#endif

我曾见过一些案例,你可以通过减少这样的警告所带来的转化率来获得几个百分点的加速。

在某些情况下,我有一个带有严格警告的头,我保留了这些警告,以防止意外转换,然而这是一种权衡,因为您可能最终会为安静的故意转换添加大量强制转换,这可能会使代码更加混乱,而收益却微乎其微。

向它扔更多的硬件!

减少可变大小(在嵌入式系统中)

如果您的变量大小大于特定体系结构上的单词大小,则会对代码大小和速度产生重大影响。例如,如果你有一个16位系统,经常使用一个长int变量,然后意识到它永远不能超出范围(−32.768…32.767)考虑将其减少到短int。

从我的个人经验来看,如果一个程序已经准备好或几乎准备好了,但是我们意识到它占用了目标硬件程序内存的110%或120%,那么对变量进行快速归一化通常可以解决这个问题。

到这个时候,优化算法或部分代码本身可能会变得令人沮丧的徒劳:

重新组织整个结构,程序就不再像预期的那样工作,或者至少引入了许多错误。 做一些聪明的技巧:通常你花了很多时间优化一些东西,并发现代码大小没有或很小的减少,因为编译器无论如何都会优化它。

Many people make the mistake of having variables which exactly store the numerical value of a unit they use the variable for: for example, their variable time stores the exact number of milliseconds, even if only time steps of say 50 ms are relevant. Maybe if your variable represented 50 ms for each increment of one, you would be able to fit into a variable smaller or equal to the word size. On an 8 bit system, for example, even a simple addition of two 32-bit variables generates a fair amount of code, especially if you are low on registers, while 8 bit additions are both small and fast.

不好说。这取决于代码的样子。如果我们可以假设代码已经存在,那么我们可以简单地查看它并从中找出如何优化它。

更好的缓存位置,循环展开,尽量消除长依赖链,以获得更好的指令级并行性。尽可能选择有条件的移动而不是分支。尽可能利用SIMD指令。

理解你的代码在做什么,理解它运行在什么硬件上。然后,决定需要做什么来提高代码的性能就变得相当简单了。这是我能想到的唯一一个真正具有普遍性的建议。

好吧,还有“在SO上显示代码,并为特定的代码段寻求优化建议”。