在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

添加这个答案,因为我没有看到它包括在所有其他。

最小化类型和符号之间的隐式转换:

这至少适用于C/ c++,即使你已经认为你已经摆脱了转换——有时测试在需要性能的函数周围添加编译器警告是很好的,特别是注意循环中的转换。

特定于GCC:您可以通过在代码周围添加一些冗长的pragmas来测试这一点,

#ifdef __GNUC__
#  pragma GCC diagnostic push
#  pragma GCC diagnostic error "-Wsign-conversion"
#  pragma GCC diagnostic error "-Wdouble-promotion"
#  pragma GCC diagnostic error "-Wsign-compare"
#  pragma GCC diagnostic error "-Wconversion"
#endif

/* your code */

#ifdef __GNUC__
#  pragma GCC diagnostic pop
#endif

我曾见过一些案例,你可以通过减少这样的警告所带来的转化率来获得几个百分点的加速。

在某些情况下,我有一个带有严格警告的头,我保留了这些警告,以防止意外转换,然而这是一种权衡,因为您可能最终会为安静的故意转换添加大量强制转换,这可能会使代码更加混乱,而收益却微乎其微。

其他回答

如果更好的硬件是一个选择,那么一定要去做。否则

Check you are using the best compiler and linker options. If hotspot routine in different library to frequent caller, consider moving or cloning it to the callers module. Eliminates some of the call overhead and may improve cache hits (cf how AIX links strcpy() statically into separately linked shared objects). This could of course decrease cache hits also, which is why one measure. See if there is any possibility of using a specialized version of the hotspot routine. Downside is more than one version to maintain. Look at the assembler. If you think it could be better, consider why the compiler did not figure this out, and how you could help the compiler. Consider: are you really using the best algorithm? Is it the best algorithm for your input size?

以下是我使用的一些快速而粗糙的优化技术。我认为这是“第一关”优化。

了解时间都花在了什么地方。是文件IO吗?是CPU时间吗?是因为网络吗?是数据库吗?如果IO不是瓶颈,优化IO是没有用的。

了解您的环境了解在哪里进行优化通常取决于开发环境。例如,在VB6中,通过引用传递比通过值传递慢,但是在C和c++中,通过引用传递要快得多。在C语言中,如果返回代码表明失败,尝试一些东西并做一些不同的事情是合理的,而在Dot Net中,捕获异常比尝试前检查有效条件要慢得多。

在频繁查询的数据库字段上构建索引。你几乎总是可以用空间来换取速度。

在要优化的循环内部,我避免了必须进行任何查找。找到循环外的偏移量和/或索引,并重用循环内的数据。

最小化IO尝试以一种减少必须读或写的次数的方式进行设计,特别是在网络连接上

减少抽象代码必须通过的抽象层越多,它就越慢。在关键循环内部,减少抽象(例如,揭示避免额外代码的低级方法)

对于带有用户界面的项目,生成一个新线程来执行较慢的任务使应用程序感觉反应更快,尽管不是。

你通常可以用空间来换取速度。如果有计算或其他密集的操作,看看是否可以在进入关键循环之前预先计算一些信息。

缓存!要使几乎任何事情都变得更快,一个便宜的方法(在程序员的努力中)是在程序的任何数据移动区域添加缓存抽象层。无论是I/O还是只是传递/创建对象或结构。通常,向工厂类和读取器/写入器添加缓存是很容易的。

有时缓存不会给你带来太多好处,但这是一种简单的方法,只需添加缓存,然后在没有帮助的地方禁用它。我经常发现这样做可以获得巨大的性能,而无需对代码进行微观分析。

更多的建议:

Avoid I/O: Any I/O (disk, network, ports, etc.) is always going to be far slower than any code that is performing calculations, so get rid of any I/O that you do not strictly need. Move I/O up-front: Load up all the data you are going to need for a calculation up-front, so that you do not have repeated I/O waits within the core of a critical algorithm (and maybe as a result repeated disk seeks, when loading all the data in one hit may avoid seeking). Delay I/O: Do not write out your results until the calculation is over, store them in a data structure and then dump that out in one go at the end when the hard work is done. Threaded I/O: For those daring enough, combine 'I/O up-front' or 'Delay I/O' with the actual calculation by moving the loading into a parallel thread, so that while you are loading more data you can work on a calculation on the data you already have, or while you calculate the next batch of data you can simultaneously write out the results from the last batch.

最后几个%是一个非常CPU和应用程序依赖的东西....

缓存架构不同,有些芯片有片上内存 你可以直接映射,ARM的(有时)有一个矢量 单位,SH4是一个有用的矩阵操作码。有GPU吗 也许一个着色器是可行的。TMS320非常 对循环中的分支敏感(因此分离循环和 如果可能的话,将条件移到室外)。

名单在....上但这类事情真的是 最后的手段……

编译x86,并运行Valgrind/Cachegrind对代码 进行适当的性能分析。或者德州仪器的 CCStudio有一个贴心的侧写器。然后你就知道在哪里了 关注……