在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

最后几个%是一个非常CPU和应用程序依赖的东西....

缓存架构不同,有些芯片有片上内存 你可以直接映射,ARM的(有时)有一个矢量 单位,SH4是一个有用的矩阵操作码。有GPU吗 也许一个着色器是可行的。TMS320非常 对循环中的分支敏感(因此分离循环和 如果可能的话,将条件移到室外)。

名单在....上但这类事情真的是 最后的手段……

编译x86,并运行Valgrind/Cachegrind对代码 进行适当的性能分析。或者德州仪器的 CCStudio有一个贴心的侧写器。然后你就知道在哪里了 关注……

其他回答

你在什么硬件上运行?您是否可以使用特定于平台化的优化(如向量化)? 你能找到更好的编译器吗?比如从GCC换成Intel? 你能让你的算法并行运行吗? 可以通过重新组织数据来减少缓存丢失吗? 可以禁用断言吗? 对编译器和平台进行微优化。在if/else语句中,把最常见的语句放在前面

向它扔更多的硬件!

目前最重要的限制因素是有限的内存带宽。多核只会让情况变得更糟,因为带宽是在核之间共享的。此外,用于实现缓存的有限芯片区域也分配给了内核和线程,这进一步恶化了这个问题。最后,保持不同缓存一致性所需的芯片间信号也会随着核数的增加而增加。这也增加了一个惩罚。

这些是您需要管理的影响。有时是通过对代码的微观管理,但有时是通过仔细考虑和重构。

很多注释已经提到了缓存友好的代码。至少有两种不同的风格:

避免内存读取延迟。 降低内存总线压力(带宽)。

第一个问题与如何使数据访问模式更规则有关,从而使硬件预取器更有效地工作。避免动态内存分配,这会将数据对象分散在内存中。使用线性容器代替链表、散列和树。

第二个问题与提高数据重用有关。修改算法以处理适合可用缓存的数据子集,并在数据仍在缓存中时尽可能多地重用这些数据。

更紧密地封装数据并确保在热循环中使用缓存线路中的所有数据,将有助于避免这些其他影响,并允许在缓存中安装更多有用的数据。

不可能有这样的全面陈述,这取决于问题领域。一些可能性:

因为你没有直接指定你的应用程序是100%计算:

搜索阻塞的调用(数据库,网络硬盘,显示更新),并隔离它们和/或将它们放入线程中。

如果你使用的数据库恰好是Microsoft SQL Server:

研究nolock和rowlock指令。(在这个论坛上有一些讨论。)

如果你的应用是纯粹的计算,你可以看看我关于旋转大图像缓存优化的问题。速度的提高使我大吃一惊。

这是一个长期的尝试,但它可能提供了一个想法,特别是如果您的问题是在成像领域:代码中旋转位图

另一个是尽量避免动态内存分配。一次分配多个结构,一次释放它们。

否则,请确定最紧密的循环,并将它们与一些数据结构一起张贴在这里(无论是伪的还是非的)。

很难对这个问题给出一般的答案。这实际上取决于你的问题领域和技术实现。一种与语言无关的通用技术:识别无法消除的代码热点,并手工优化汇编代码。