在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

如果你有很多高度并行的浮点运算——尤其是单精度运算——尝试使用OpenCL或(对于NVidia芯片)CUDA将其卸载到图形处理器上(如果有的话)。gpu在着色器中拥有强大的浮点计算能力,这比CPU要大得多。

其他回答

不可能有这样的全面陈述,这取决于问题领域。一些可能性:

因为你没有直接指定你的应用程序是100%计算:

搜索阻塞的调用(数据库,网络硬盘,显示更新),并隔离它们和/或将它们放入线程中。

如果你使用的数据库恰好是Microsoft SQL Server:

研究nolock和rowlock指令。(在这个论坛上有一些讨论。)

如果你的应用是纯粹的计算,你可以看看我关于旋转大图像缓存优化的问题。速度的提高使我大吃一惊。

这是一个长期的尝试,但它可能提供了一个想法,特别是如果您的问题是在成像领域:代码中旋转位图

另一个是尽量避免动态内存分配。一次分配多个结构,一次释放它们。

否则,请确定最紧密的循环,并将它们与一些数据结构一起张贴在这里(无论是伪的还是非的)。

建议:

Pre-compute rather than re-calculate: any loops or repeated calls that contain calculations that have a relatively limited range of inputs, consider making a lookup (array or dictionary) that contains the result of that calculation for all values in the valid range of inputs. Then use a simple lookup inside the algorithm instead. Down-sides: if few of the pre-computed values are actually used this may make matters worse, also the lookup may take significant memory. Don't use library methods: most libraries need to be written to operate correctly under a broad range of scenarios, and perform null checks on parameters, etc. By re-implementing a method you may be able to strip out a lot of logic that does not apply in the exact circumstance you are using it. Down-sides: writing additional code means more surface area for bugs. Do use library methods: to contradict myself, language libraries get written by people that are a lot smarter than you or me; odds are they did it better and faster. Do not implement it yourself unless you can actually make it faster (i.e.: always measure!) Cheat: in some cases although an exact calculation may exist for your problem, you may not need 'exact', sometimes an approximation may be 'good enough' and a lot faster in the deal. Ask yourself, does it really matter if the answer is out by 1%? 5%? even 10%? Down-sides: Well... the answer won't be exact.

不好说。这取决于代码的样子。如果我们可以假设代码已经存在,那么我们可以简单地查看它并从中找出如何优化它。

更好的缓存位置,循环展开,尽量消除长依赖链,以获得更好的指令级并行性。尽可能选择有条件的移动而不是分支。尽可能利用SIMD指令。

理解你的代码在做什么,理解它运行在什么硬件上。然后,决定需要做什么来提高代码的性能就变得相当简单了。这是我能想到的唯一一个真正具有普遍性的建议。

好吧,还有“在SO上显示代码,并为特定的代码段寻求优化建议”。

目前最重要的限制因素是有限的内存带宽。多核只会让情况变得更糟,因为带宽是在核之间共享的。此外,用于实现缓存的有限芯片区域也分配给了内核和线程,这进一步恶化了这个问题。最后,保持不同缓存一致性所需的芯片间信号也会随着核数的增加而增加。这也增加了一个惩罚。

这些是您需要管理的影响。有时是通过对代码的微观管理,但有时是通过仔细考虑和重构。

很多注释已经提到了缓存友好的代码。至少有两种不同的风格:

避免内存读取延迟。 降低内存总线压力(带宽)。

第一个问题与如何使数据访问模式更规则有关,从而使硬件预取器更有效地工作。避免动态内存分配,这会将数据对象分散在内存中。使用线性容器代替链表、散列和树。

第二个问题与提高数据重用有关。修改算法以处理适合可用缓存的数据子集,并在数据仍在缓存中时尽可能多地重用这些数据。

更紧密地封装数据并确保在热循环中使用缓存线路中的所有数据,将有助于避免这些其他影响,并允许在缓存中安装更多有用的数据。

你知道吗,一根CAT6电缆能够比缺省的Cat5e UTP电缆更好地屏蔽外部干扰10倍?

对于任何非离线项目,尽管拥有最好的软件和硬件,但如果你的throughoutput很弱,那么这条细线就会挤压数据并给你带来延迟,尽管只有几毫秒……

此外,CAT6电缆的最大吞吐量更高,因为您实际上更有可能收到铜芯电缆,而不是CCA,铜芯包覆铝,这通常出现在所有标准CAT5e电缆中。

如果您面临丢包,丢包,那么提高24/7操作的吞吐量可靠性可以使您所寻找的不同。

对于那些追求家庭/办公室连接可靠性的人来说(并且愿意对今年的快餐店说不,在年底你可以在那里),以知名品牌的CAT7电缆的形式为自己提供LAN连接的顶峰。