在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

我想这已经用不同的方式说过了。但是当你在处理一个处理器密集型算法时,你应该以牺牲其他所有东西为代价来简化最内部循环中的所有东西。

That may seem obvious to some, but it's something I try to focus on regardless of the language I'm working with. If you're dealing with nested loops, for example, and you find an opportunity to take some code down a level, you can in some cases drastically speed up your code. As another example, there are the little things to think about like working with integers instead of floating point variables whenever you can, and using multiplication instead of division whenever you can. Again, these are things that should be considered for your most inner loop.

有时,您可能会发现在内循环中对整数执行数学运算的好处,然后将其缩小为随后可以使用的浮点变量。这是一个牺牲一个部分的速度来提高另一个部分的速度的例子,但在某些情况下,这样做是值得的。

其他回答

虽然我喜欢Mike Dunlavey的回答,但事实上这是一个很好的答案,并且有支持的例子,我认为它可以简单地表达出来:

首先找出哪些事情最耗费时间,并了解原因。

它是时间消耗的识别过程,可以帮助您了解必须在哪里改进算法。这是我能找到的唯一一个全面的语言不可知论答案,这个问题已经被认为是完全优化的。同时假设您希望在追求速度的过程中独立于体系结构。

因此,虽然算法可能被优化了,但它的实现可能没有。标识可以让您知道哪个部分是哪个部分:算法或实现。所以,占用时间最多的就是你审查的首选对象。但是既然你说你想把最后的%挤出来,你可能还想检查一下较小的部分,那些你一开始没有仔细检查过的部分。

最后,对实现相同解决方案的不同方法的性能数据进行一些尝试和错误,或者可能的不同算法,可以带来有助于识别浪费时间和节省时间的见解。

HPH, asoudmove。

以下是我使用的一些快速而粗糙的优化技术。我认为这是“第一关”优化。

了解时间都花在了什么地方。是文件IO吗?是CPU时间吗?是因为网络吗?是数据库吗?如果IO不是瓶颈,优化IO是没有用的。

了解您的环境了解在哪里进行优化通常取决于开发环境。例如,在VB6中,通过引用传递比通过值传递慢,但是在C和c++中,通过引用传递要快得多。在C语言中,如果返回代码表明失败,尝试一些东西并做一些不同的事情是合理的,而在Dot Net中,捕获异常比尝试前检查有效条件要慢得多。

在频繁查询的数据库字段上构建索引。你几乎总是可以用空间来换取速度。

在要优化的循环内部,我避免了必须进行任何查找。找到循环外的偏移量和/或索引,并重用循环内的数据。

最小化IO尝试以一种减少必须读或写的次数的方式进行设计,特别是在网络连接上

减少抽象代码必须通过的抽象层越多,它就越慢。在关键循环内部,减少抽象(例如,揭示避免额外代码的低级方法)

对于带有用户界面的项目,生成一个新线程来执行较慢的任务使应用程序感觉反应更快,尽管不是。

你通常可以用空间来换取速度。如果有计算或其他密集的操作,看看是否可以在进入关键循环之前预先计算一些信息。

我想这已经用不同的方式说过了。但是当你在处理一个处理器密集型算法时,你应该以牺牲其他所有东西为代价来简化最内部循环中的所有东西。

That may seem obvious to some, but it's something I try to focus on regardless of the language I'm working with. If you're dealing with nested loops, for example, and you find an opportunity to take some code down a level, you can in some cases drastically speed up your code. As another example, there are the little things to think about like working with integers instead of floating point variables whenever you can, and using multiplication instead of division whenever you can. Again, these are things that should be considered for your most inner loop.

有时,您可能会发现在内循环中对整数执行数学运算的好处,然后将其缩小为随后可以使用的浮点变量。这是一个牺牲一个部分的速度来提高另一个部分的速度的例子,但在某些情况下,这样做是值得的。

添加这个答案,因为我没有看到它包括在所有其他。

最小化类型和符号之间的隐式转换:

这至少适用于C/ c++,即使你已经认为你已经摆脱了转换——有时测试在需要性能的函数周围添加编译器警告是很好的,特别是注意循环中的转换。

特定于GCC:您可以通过在代码周围添加一些冗长的pragmas来测试这一点,

#ifdef __GNUC__
#  pragma GCC diagnostic push
#  pragma GCC diagnostic error "-Wsign-conversion"
#  pragma GCC diagnostic error "-Wdouble-promotion"
#  pragma GCC diagnostic error "-Wsign-compare"
#  pragma GCC diagnostic error "-Wconversion"
#endif

/* your code */

#ifdef __GNUC__
#  pragma GCC diagnostic pop
#endif

我曾见过一些案例,你可以通过减少这样的警告所带来的转化率来获得几个百分点的加速。

在某些情况下,我有一个带有严格警告的头,我保留了这些警告,以防止意外转换,然而这是一种权衡,因为您可能最终会为安静的故意转换添加大量强制转换,这可能会使代码更加混乱,而收益却微乎其微。

如果你有很多高度并行的浮点运算——尤其是单精度运算——尝试使用OpenCL或(对于NVidia芯片)CUDA将其卸载到图形处理器上(如果有的话)。gpu在着色器中拥有强大的浮点计算能力,这比CPU要大得多。