在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

减少可变大小(在嵌入式系统中)

如果您的变量大小大于特定体系结构上的单词大小,则会对代码大小和速度产生重大影响。例如,如果你有一个16位系统,经常使用一个长int变量,然后意识到它永远不能超出范围(−32.768…32.767)考虑将其减少到短int。

从我的个人经验来看,如果一个程序已经准备好或几乎准备好了,但是我们意识到它占用了目标硬件程序内存的110%或120%,那么对变量进行快速归一化通常可以解决这个问题。

到这个时候,优化算法或部分代码本身可能会变得令人沮丧的徒劳:

重新组织整个结构,程序就不再像预期的那样工作,或者至少引入了许多错误。 做一些聪明的技巧:通常你花了很多时间优化一些东西,并发现代码大小没有或很小的减少,因为编译器无论如何都会优化它。

Many people make the mistake of having variables which exactly store the numerical value of a unit they use the variable for: for example, their variable time stores the exact number of milliseconds, even if only time steps of say 50 ms are relevant. Maybe if your variable represented 50 ms for each increment of one, you would be able to fit into a variable smaller or equal to the word size. On an 8 bit system, for example, even a simple addition of two 32-bit variables generates a fair amount of code, especially if you are low on registers, while 8 bit additions are both small and fast.

其他回答

您可能应该考虑“谷歌视角”,即确定您的应用程序如何在很大程度上实现并行和并发,这也不可避免地意味着在某种程度上考虑将您的应用程序分布在不同的机器和网络上,这样它就可以理想地与您投入的硬件几乎线性扩展。

另一方面,谷歌人员也以投入大量人力和资源来解决他们正在使用的项目、工具和基础设施中的一些问题而闻名,例如,通过拥有一个专门的工程师团队来破解gcc内部,以便为Google典型的用例场景做好准备,从而对gcc进行整个程序优化。

类似地,分析应用程序不再仅仅意味着分析程序代码,还包括它周围的所有系统和基础设施(想想网络、交换机、服务器、RAID阵列),以便从系统的角度识别冗余和优化潜力。

向它扔更多的硬件!

目前最重要的限制因素是有限的内存带宽。多核只会让情况变得更糟,因为带宽是在核之间共享的。此外,用于实现缓存的有限芯片区域也分配给了内核和线程,这进一步恶化了这个问题。最后,保持不同缓存一致性所需的芯片间信号也会随着核数的增加而增加。这也增加了一个惩罚。

这些是您需要管理的影响。有时是通过对代码的微观管理,但有时是通过仔细考虑和重构。

很多注释已经提到了缓存友好的代码。至少有两种不同的风格:

避免内存读取延迟。 降低内存总线压力(带宽)。

第一个问题与如何使数据访问模式更规则有关,从而使硬件预取器更有效地工作。避免动态内存分配,这会将数据对象分散在内存中。使用线性容器代替链表、散列和树。

第二个问题与提高数据重用有关。修改算法以处理适合可用缓存的数据子集,并在数据仍在缓存中时尽可能多地重用这些数据。

更紧密地封装数据并确保在热循环中使用缓存线路中的所有数据,将有助于避免这些其他影响,并允许在缓存中安装更多有用的数据。

你在什么硬件上运行?您是否可以使用特定于平台化的优化(如向量化)? 你能找到更好的编译器吗?比如从GCC换成Intel? 你能让你的算法并行运行吗? 可以通过重新组织数据来减少缓存丢失吗? 可以禁用断言吗? 对编译器和平台进行微优化。在if/else语句中,把最常见的语句放在前面

不好说。这取决于代码的样子。如果我们可以假设代码已经存在,那么我们可以简单地查看它并从中找出如何优化它。

更好的缓存位置,循环展开,尽量消除长依赖链,以获得更好的指令级并行性。尽可能选择有条件的移动而不是分支。尽可能利用SIMD指令。

理解你的代码在做什么,理解它运行在什么硬件上。然后,决定需要做什么来提高代码的性能就变得相当简单了。这是我能想到的唯一一个真正具有普遍性的建议。

好吧,还有“在SO上显示代码,并为特定的代码段寻求优化建议”。