我知道去掉一列要用df。Drop ('column name', axis=1)。是否有一种方法可以使用数字索引而不是列名来删除列?


当前回答

您可以简单地为df提供columns参数。Drop命令,所以在这种情况下你不需要指定轴,像这样

columns_list = [1, 2, 4] # index numbers of columns you want to delete
df = df.drop(columns=df.columns[columns_list])

参考参见这里的columns参数:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html?highlight=drop#pandas.DataFrame.drop

其他回答

由于可以有多个具有相同名称的列,我们应该首先重命名列。 下面是解决方案的代码。

df.columns=list(range(0,len(df.columns)))
df.drop(columns=[1,2])#drop second and third columns

如果有多个具有相同名称的列,那么到目前为止给出的解决方案将删除所有列,这可能不是我们要寻找的。如果试图删除除一个实例之外的重复列,则可能会出现这种情况。下面的例子说明了这种情况:

# make a df with duplicate columns 'x'
df = pd.DataFrame({'x': range(5) , 'x':range(5), 'y':range(6, 11)}, columns = ['x', 'x', 'y']) 


df
Out[495]: 
   x  x   y
0  0  0   6
1  1  1   7
2  2  2   8
3  3  3   9
4  4  4  10

# attempting to drop the first column according to the solution offered so far     
df.drop(df.columns[0], axis = 1) 
   y
0  6
1  7
2  8
3  9
4  10

可以看到,两个x列都被删除了。 可选择的解决方案:

column_numbers = [x for x in range(df.shape[1])]  # list of columns' integer indices

column_numbers .remove(0) #removing column integer index 0
df.iloc[:, column_numbers] #return all columns except the 0th column

   x  y
0  0  6
1  1  7
2  2  8
3  3  9
4  4  10

如您所见,这实际上只删除了第0列(第一个'x')。

如果有两个名称相同的列。一种简单的方法是手动重命名列,就像这样

df.columns = ['column1', 'column2', 'column3']

然后你可以根据你的要求通过列索引,像这样:-

df.drop(df.columns[1], axis=1, inplace=True)

df。列[1]将删除索引1。

记住轴1 =列,轴0 =行。

像这样删除多个列:

cols = [1,2,4,5,12]
df.drop(df.columns[cols],axis=1,inplace=True)

inplace=True用于在数据帧本身中进行更改,而不需要在数据帧的副本上进行列删除。如需保留原稿,请使用:

df_after_dropping = df.drop(df.columns[cols],axis=1)

您需要根据列在数据框架中的位置来标识它们。例如,如果你想删除(del)列2、3和5,它将是,

df.drop(df.columns[[2,3,5]], axis = 1)