我知道去掉一列要用df。Drop ('column name', axis=1)。是否有一种方法可以使用数字索引而不是列名来删除列?
当前回答
您可以简单地为df提供columns参数。Drop命令,所以在这种情况下你不需要指定轴,像这样
columns_list = [1, 2, 4] # index numbers of columns you want to delete
df = df.drop(columns=df.columns[columns_list])
参考参见这里的columns参数:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html?highlight=drop#pandas.DataFrame.drop
其他回答
由于可以有多个具有相同名称的列,我们应该首先重命名列。 下面是解决方案的代码。
df.columns=list(range(0,len(df.columns)))
df.drop(columns=[1,2])#drop second and third columns
如果您真的想处理整数(为什么?),那么您可以构建一个字典。
col_dict = {x: col for x, col in enumerate(df.columns)}
那么df = df。Drop (col_dict[0], 1)将按预期工作
编辑:你可以把它放在一个为你做这件事的函数中,尽管这样它会在你每次调用它的时候创建字典
def drop_col_n(df, col_n_to_drop):
col_dict = {x: col for x, col in enumerate(df.columns)}
return df.drop(col_dict[col_n_to_drop], 1)
df = drop_col_n(df, 2)
你可以像这样删除i索引上的列:
df.drop(df.columns[i], axis=1)
这可能会很奇怪,如果列中有重复的名字,你可以重命名你想要删除的列。或者你可以像这样重新分配数据帧:
df = df.iloc[:, [j for j, c in enumerate(df.columns) if j != i]]
感谢我很晚才参加派对,但我也有同样的问题,一个DataFrame有一个MultiIndex。Pandas真的不喜欢非唯一的多索引,在某种程度上,上面的大多数解决方案在这种设置下都不起作用(例如,.drop函数只会错误地带有ValueError:不能处理非唯一的多索引!)
我得到的解决方案是使用.iloc代替。根据文档,use可以使用带有掩码的iloc(=你想保留的列的True/False值列表):
使用长度与列匹配的布尔数组。 df。iloc[:,[正确,错误,正确,错误]]
结合df.columns. duplication()来识别重复的列,你可以以一种高效的、panda -native的方式做到这一点:
df = df.iloc[:, ~df.columns.duplicated()]
您需要根据列在数据框架中的位置来标识它们。例如,如果你想删除(del)列2、3和5,它将是,
df.drop(df.columns[[2,3,5]], axis = 1)