我知道去掉一列要用df。Drop ('column name', axis=1)。是否有一种方法可以使用数字索引而不是列名来删除列?
当前回答
如果您真的想处理整数(为什么?),那么您可以构建一个字典。
col_dict = {x: col for x, col in enumerate(df.columns)}
那么df = df。Drop (col_dict[0], 1)将按预期工作
编辑:你可以把它放在一个为你做这件事的函数中,尽管这样它会在你每次调用它的时候创建字典
def drop_col_n(df, col_n_to_drop):
col_dict = {x: col for x, col in enumerate(df.columns)}
return df.drop(col_dict[col_n_to_drop], 1)
df = drop_col_n(df, 2)
其他回答
由于可以有多个具有相同名称的列,我们应该首先重命名列。 下面是解决方案的代码。
df.columns=list(range(0,len(df.columns)))
df.drop(columns=[1,2])#drop second and third columns
如果您真的想处理整数(为什么?),那么您可以构建一个字典。
col_dict = {x: col for x, col in enumerate(df.columns)}
那么df = df。Drop (col_dict[0], 1)将按预期工作
编辑:你可以把它放在一个为你做这件事的函数中,尽管这样它会在你每次调用它的时候创建字典
def drop_col_n(df, col_n_to_drop):
col_dict = {x: col for x, col in enumerate(df.columns)}
return df.drop(col_dict[col_n_to_drop], 1)
df = drop_col_n(df, 2)
如果有两个名称相同的列。一种简单的方法是手动重命名列,就像这样
df.columns = ['column1', 'column2', 'column3']
然后你可以根据你的要求通过列索引,像这样:-
df.drop(df.columns[1], axis=1, inplace=True)
df。列[1]将删除索引1。
记住轴1 =列,轴0 =行。
你可以像这样删除i索引上的列:
df.drop(df.columns[i], axis=1)
这可能会很奇怪,如果列中有重复的名字,你可以重命名你想要删除的列。或者你可以像这样重新分配数据帧:
df = df.iloc[:, [j for j, c in enumerate(df.columns) if j != i]]
获得你想要的列的好方法(没有问题重复的名称)。
例如,您希望删除的列索引包含在类似列表的变量中
unnecessary_cols = [1, 4, 5, 6]
then
import numpy as np
df.iloc[:, np.setdiff1d(np.arange(len(df.columns)), unnecessary_cols)]