我知道去掉一列要用df。Drop ('column name', axis=1)。是否有一种方法可以使用数字索引而不是列名来删除列?


当前回答

如果有两个名称相同的列。一种简单的方法是手动重命名列,就像这样

df.columns = ['column1', 'column2', 'column3']

然后你可以根据你的要求通过列索引,像这样:-

df.drop(df.columns[1], axis=1, inplace=True)

df。列[1]将删除索引1。

记住轴1 =列,轴0 =行。

其他回答

获得你想要的列的好方法(没有问题重复的名称)。

例如,您希望删除的列索引包含在类似列表的变量中

unnecessary_cols = [1, 4, 5, 6]

then

import numpy as np
df.iloc[:, np.setdiff1d(np.arange(len(df.columns)), unnecessary_cols)]

如果有两个名称相同的列。一种简单的方法是手动重命名列,就像这样

df.columns = ['column1', 'column2', 'column3']

然后你可以根据你的要求通过列索引,像这样:-

df.drop(df.columns[1], axis=1, inplace=True)

df。列[1]将删除索引1。

记住轴1 =列,轴0 =行。

您可以使用下面的行删除前两列(或任何您不需要的列):

df.drop([df.columns[0], df.columns[1]], axis=1)

参考

由于可以有多个具有相同名称的列,我们应该首先重命名列。 下面是解决方案的代码。

df.columns=list(range(0,len(df.columns)))
df.drop(columns=[1,2])#drop second and third columns

您需要根据列在数据框架中的位置来标识它们。例如,如果你想删除(del)列2、3和5,它将是,

df.drop(df.columns[[2,3,5]], axis = 1)