PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

以下是对这个问题的最新答案总结 而且 相关的 的问题。

PEP 8 recommends putting imports at the top. It's often more convenient to get ImportErrors when you first run your program rather than when your program first calls your function. Putting imports in the function scope can help avoid issues with circular imports. Putting imports in the function scope helps keep maintain a clean module namespace, so that it does not appear among tab-completion suggestions. Start-up time: imports in a function won't run until (if) that function is called. Might get significant with heavy-weight libraries. Even though import statements are super fast on subsequent runs, they still incur a speed penalty which can be significant if the function is trivial but frequently in use. Imports under the __name__ == "__main__" guard seem very reasonable. Refactoring might be easier if the imports are located in the function where they're used (facilitates moving it to another module). It can also be argued that this is good for readability. However, most would argue the contrary, i.e. Imports at the top enhance readability, since you can see all your dependencies at a glance. It seems unclear if dynamic or conditional imports favour one style over another.

其他回答

我采用了将所有导入放在使用它们的函数中,而不是放在模块的顶部的做法。

这样做的好处是能够更可靠地进行重构。当我将一个函数从一个模块移动到另一个模块时,我知道该函数将继续工作,并且保留所有遗留的测试。如果我将导入放在模块的顶部,当我移动一个函数时,我发现我最终要花费大量时间来完成新模块的导入并使其最小化。重构IDE可能会让这一点变得无关紧要。

正如在其他地方提到的那样,有一个速度惩罚。我在我的应用程序中测量了这一点,发现它对我的目的来说是微不足道的。

不需要搜索(例如grep)就能看到所有模块依赖关系也是很好的。然而,我关心模块依赖关系的原因通常是因为我正在安装、重构或移动由多个文件组成的整个系统,而不仅仅是单个模块。在这种情况下,我无论如何都要执行全局搜索,以确保具有系统级依赖关系。因此,我还没有找到全局导入来帮助我在实践中理解一个系统。

我通常把sys的导入放在if __name__=='__main__'检查中,然后将参数(如sys.argv[1:])传递给main()函数。这允许我在sys未被导入的上下文中使用main。

下面是一个示例,其中所有导入都位于最顶部(这是我唯一一次需要这样做)。我希望能够在Un*x和Windows上终止子进程。

import os
# ...
try:
    kill = os.kill  # will raise AttributeError on Windows
    from signal import SIGTERM
    def terminate(process):
        kill(process.pid, SIGTERM)
except (AttributeError, ImportError):
    try:
        from win32api import TerminateProcess  # use win32api if available
        def terminate(process):
            TerminateProcess(int(process._handle), -1)
    except ImportError:
        def terminate(process):
            raise NotImplementedError  # define a dummy function

(回顾:约翰·米利金所说。)

可读性

除了启动性能外,本地化import语句还需要考虑可读性。例如,在我目前的第一个python项目中使用python行号1283到1296:

listdata.append(['tk font version', font_version])
listdata.append(['Gtk version', str(Gtk.get_major_version())+"."+
                 str(Gtk.get_minor_version())+"."+
                 str(Gtk.get_micro_version())])

import xml.etree.ElementTree as ET

xmltree = ET.parse('/usr/share/gnome/gnome-version.xml')
xmlroot = xmltree.getroot()
result = []
for child in xmlroot:
    result.append(child.text)
listdata.append(['Gnome version', result[0]+"."+result[1]+"."+
                 result[2]+" "+result[3]])

如果import语句在文件的顶部,我将不得不向上滚动很长一段距离,或按Home键,以找出ET是什么。然后我将不得不返回到第1283行继续阅读代码。

实际上,即使import语句像许多人那样位于函数(或类)的顶部,也需要向上和向下分页。

很少会显示Gnome版本号,因此在文件顶部导入会引入不必要的启动延迟。

Putting the import statement inside of a function can prevent circular dependencies. For example, if you have 2 modules, X.py and Y.py, and they both need to import each other, this will cause a circular dependency when you import one of the modules causing an infinite loop. If you move the import statement in one of the modules then it won't try to import the other module till the function is called, and that module will already be imported, so no infinite loop. Read here for more - effbot.org/zone/import-confusion.htm

模块导入非常快,但不是即时的。这意味着:

将导入放在模块的顶部是可以的,因为这是一个微不足道的成本,只需要支付一次。 将导入放在函数中会导致对该函数的调用花费更长的时间。

所以如果你关心效率,把进口放在最上面。只有在分析显示有帮助的情况下,才将它们移动到函数中(您进行了分析,以查看哪里可以最好地提高性能,对吗??)


我所见过的执行惰性导入的最佳理由是:

可选的库支持。如果您的代码有多个使用不同库的路径,如果没有安装可选库,请不要中断。 在插件的__init__.py中,该插件可能被导入,但实际上没有使用。例如Bazaar插件,它们使用bzrlib的惰性加载框架。