PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

以下是对这个问题的最新答案总结 而且 相关的 的问题。

PEP 8 recommends putting imports at the top. It's often more convenient to get ImportErrors when you first run your program rather than when your program first calls your function. Putting imports in the function scope can help avoid issues with circular imports. Putting imports in the function scope helps keep maintain a clean module namespace, so that it does not appear among tab-completion suggestions. Start-up time: imports in a function won't run until (if) that function is called. Might get significant with heavy-weight libraries. Even though import statements are super fast on subsequent runs, they still incur a speed penalty which can be significant if the function is trivial but frequently in use. Imports under the __name__ == "__main__" guard seem very reasonable. Refactoring might be easier if the imports are located in the function where they're used (facilitates moving it to another module). It can also be argued that this is good for readability. However, most would argue the contrary, i.e. Imports at the top enhance readability, since you can see all your dependencies at a glance. It seems unclear if dynamic or conditional imports favour one style over another.

其他回答

下面是一个示例,其中所有导入都位于最顶部(这是我唯一一次需要这样做)。我希望能够在Un*x和Windows上终止子进程。

import os
# ...
try:
    kill = os.kill  # will raise AttributeError on Windows
    from signal import SIGTERM
    def terminate(process):
        kill(process.pid, SIGTERM)
except (AttributeError, ImportError):
    try:
        from win32api import TerminateProcess  # use win32api if available
        def terminate(process):
            TerminateProcess(int(process._handle), -1)
    except ImportError:
        def terminate(process):
            raise NotImplementedError  # define a dummy function

(回顾:约翰·米利金所说。)

I do not aspire to provide complete answer, because others have already done this very well. I just want to mention one use case when I find especially useful to import modules inside functions. My application uses python packages and modules stored in certain location as plugins. During application startup, the application walks through all the modules in the location and imports them, then it looks inside the modules and if it finds some mounting points for the plugins (in my case it is a subclass of a certain base class having a unique ID) it registers them. The number of plugins is large (now dozens, but maybe hundreds in the future) and each of them is used quite rarely. Having imports of third party libraries at the top of my plugin modules was a bit penalty during application startup. Especially some thirdparty libraries are heavy to import (e.g. import of plotly even tries to connect to internet and download something which was adding about one second to startup). By optimizing imports (calling them only in the functions where they are used) in the plugins I managed to shrink the startup from 10 seconds to some 2 seconds. That is a big difference for my users.

所以我的答案是否定的,不要总是把导入放在模块的顶部。

虽然PEP鼓励在模块顶部导入,但在其他级别导入并不会出错。这表明进口应该在顶部,但也有例外。

在使用模块时加载模块是一种微优化。导入缓慢的代码可以在以后进行优化,如果这会产生相当大的差异的话。

不过,您可以在尽可能靠近顶部的位置引入标志,以便有条件地导入,允许用户使用配置导入所需的模块,同时仍然立即导入所有内容。

尽快导入意味着如果任何导入(或导入的导入)缺失或有语法错误,程序将失败。如果所有导入都发生在所有模块的顶部,则python分两步工作。编译。运行。

内置模块可以在任何导入它们的地方工作,因为它们设计得很好。您编写的模块应该是相同的。将导入移动到顶部或它们的第一次使用位置有助于确保没有副作用,并且代码正在注入依赖项。

无论您是否将导入放在顶部,当导入放在顶部时,代码都应该仍然可以工作。所以从立即导入开始,然后根据需要进行优化。

在函数中导入变量/局部作用域可以提高性能。这取决于函数中导入对象的使用情况。如果你多次循环并访问一个模块全局对象,将它导入为本地会有帮助。

test.py

X=10
Y=11
Z=12
def add(i):
  i = i + 10

runlocal.py

from test import add, X, Y, Z

    def callme():
      x=X
      y=Y
      z=Z
      ladd=add 
      for i  in range(100000000):
        ladd(i)
        x+y+z

    callme()

run.py

from test import add, X, Y, Z

def callme():
  for i in range(100000000):
    add(i)
    X+Y+Z

callme()

在Linux上的时间显示了一个小的增益

/usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python run.py 
    0:17.80 real,   17.77 user, 0.01 sys
/tmp/test$ /usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python runlocal.py 
    0:14.23 real,   14.22 user, 0.01 sys

真实的是挂钟。用户是程序中的时间。Sys是系统调用的时间。

https://docs.python.org/3.5/reference/executionmodel.html#resolution-of-names

为了完成老谋子的回答和最初的问题:

当我们不得不处理循环依赖关系时,我们可以做一些“技巧”。假设我们正在处理模块a.py和b.py,它们分别包含x()和b.y()。然后:

我们可以移动模块底部的from导入之一。 我们可以将其中一个from导入移动到实际需要导入的函数或方法中(这并不总是可行的,因为您可能从多个地方使用它)。 我们可以把其中一个import改成import,就像import a

总结一下。如果您没有处理循环依赖关系,也没有使用某种技巧来避免它们,那么最好将所有导入放在顶部,因为原因已经在这个问题的其他答案中解释过了。请在做这些“技巧”时附上评论,这总是受欢迎的!:)