我在帮助一家兽医诊所测量狗爪下的压力。我使用Python进行数据分析,现在我正试图将爪子划分为(解剖学上的)子区域。

我为每个爪子制作了一个2D数组,其中包括爪子随时间加载的每个传感器的最大值。这里有一个单爪的例子,我使用Excel绘制我想要“检测”的区域。传感器周围是2 * 2的方框带有局部最大值,它们加起来的和最大。

所以我尝试了一些实验,并决定简单地寻找每一列和每一行的最大值(由于爪子的形状,不能只看一个方向)。这似乎能很好地“检测”到不同脚趾的位置,但也能标记出相邻的传感器。

那么告诉Python哪些最大值是我想要的最好方法是什么呢?

注意:2x2的方块不能重叠,因为它们必须是分开的脚趾!

此外,我选择了2x2作为方便,任何更高级的解决方案都是受欢迎的,但我只是一个人类运动科学家,所以我既不是真正的程序员也不是数学家,所以请保持“简单”。

下面是一个可以用np.loadtxt加载的版本


结果

所以我尝试了@jextee的解决方案(见下面的结果)。正如你所看到的,它对前爪很有效,但对后腿就不那么有效了。

更具体地说,它无法识别第四个脚趾的小峰。这显然是固有的事实,即循环从上向下看最低值,而不考虑它在哪里。

有没有人知道如何调整@jextee的算法,让它也能找到第四个脚趾?

因为我还没有处理其他的试验,所以我无法提供其他的样品。但我之前给出的数据是每个爪子的平均值。这个文件是一个数组,其中包含9只爪子的最大数据,按照它们与盘子接触的顺序排列。

这张照片显示了它们在空间上是如何分布在板块上的。

更新:

我已经为任何感兴趣的人建立了一个博客,我已经设置了一个OneDrive与所有的原始测量。因此,对于任何要求更多数据的人:给你更多力量!


新更新:

所以在我得到关于爪子检测和爪子分类的问题的帮助后,我终于能够检查每个爪子的脚趾检测!事实证明,除了像我自己例子中那样大的爪子,它在其他地方都不太管用。当然,事后看来,是我自己的错,我这么武断地选择了2x2。

这里有一个很好的例子,它错在哪里:指甲被识别为脚趾,而“脚跟”太宽了,它被识别了两次!

爪子太大了,所以采用没有重叠的2x2尺寸,会导致一些脚趾被检测两次。反过来,在小型犬中,它经常找不到第5个脚趾,我怀疑这是由于2x2面积太大造成的。

在对我所有的测量都尝试了当前的解决方案后,我得出了一个惊人的结论,几乎所有的小狗都没有发现第5个脚趾,而在超过50%的大型狗的冲击中,它会发现更多!

显然我需要改变它。我自己的想法是改变社区的大小,让小狗住的地方更小,大狗住的地方更大。但是generate_binary_structure不允许我改变数组的大小。

因此,我希望其他人有更好的建议来定位脚趾,也许是脚趾面积与爪子大小的比例?


当前回答

这是我在大型望远镜上做类似事情时使用的另一种方法:

1)搜索最高像素。 一旦你有了这个,在周围搜索2x2的最佳拟合(可能是最大化2x2的和),或者在4x4的子区域内做一个2d高斯拟合,以最高像素为中心。

然后在峰值中心周围将那些2x2像素设置为0(或者3x3)

回到1),重复直到峰值低于噪声阈值,或者你有所有你需要的脚趾

其他回答

物理学家的解决办法: 定义5个爪标记,用它们的位置X_i来标识,并用随机的位置初始化它们。 定义一个能量函数,结合标记物在爪子位置的定位奖励和标记物重叠惩罚;比方说:

E(X_i;S)=-Sum_i(S(X_i))+alfa*Sum_ij (|X_i-Xj|<=2*sqrt(2)?1:0)

(S(X_i)是围绕X_i的2x2平方的平均力,阿尔法是一个实验峰值参数)

Now time to do some Metropolis-Hastings magic: 1. Select random marker and move it by one pixel in random direction. 2. Calculate dE, the difference of energy this move caused. 3. Get an uniform random number from 0-1 and call it r. 4. If dE<0 or exp(-beta*dE)>r, accept the move and go to 1; if not, undo the move and go to 1. This should be repeated until the markers will converge to paws. Beta controls the scanning to optimizing tradeoff, so it should be also optimized experimentally; it can be also constantly increased with the time of simulation (simulated annealing).

也许一个简单的方法在这里就足够了:建立一个平面上所有2x2正方形的列表,按它们的和排序(降序)。

首先,在你的“爪子列表”中选择价值最高的方块。然后,迭代地选择4个次优正方形,这些正方形不与之前找到的任何正方形相交。

我相信你现在已经有足够的信息了,但我忍不住建议使用k-均值聚类方法。k-means是一种无监督聚类算法,它将你的数据(在任何维度上-我碰巧在3D中这样做),并将其排列成k个具有明显边界的聚类。这里很好,因为你确切地知道这些犬齿应该有多少脚趾。

此外,它是在Scipy中实现的,非常好(http://docs.scipy.org/doc/scipy/reference/cluster.vq.html)。

下面是它在空间上解析3D集群的一个例子:

你想要做的有点不同(2D,包括压力值),但我仍然认为你可以尝试一下。

如果你一步一步地进行:你首先找到全局最大值,如果需要处理周围的点,然后将找到的区域设置为零,然后对下一个重复。

好吧,这里有一些简单而不是非常有效的代码,但对于这样大的数据集来说,这是很好的。

import numpy as np
grid = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0,0],
              [0,0,0,0,0,0,0,0,0.4,0.4,0.4,0,0,0],
              [0,0,0,0,0.4,1.4,1.4,1.8,0.7,0,0,0,0,0],
              [0,0,0,0,0.4,1.4,4,5.4,2.2,0.4,0,0,0,0],
              [0,0,0.7,1.1,0.4,1.1,3.2,3.6,1.1,0,0,0,0,0],
              [0,0.4,2.9,3.6,1.1,0.4,0.7,0.7,0.4,0.4,0,0,0,0],
              [0,0.4,2.5,3.2,1.8,0.7,0.4,0.4,0.4,1.4,0.7,0,0,0],
              [0,0,0.7,3.6,5.8,2.9,1.4,2.2,1.4,1.8,1.1,0,0,0],
              [0,0,1.1,5,6.8,3.2,4,6.1,1.8,0.4,0.4,0,0,0],
              [0,0,0.4,1.1,1.8,1.8,4.3,3.2,0.7,0,0,0,0,0],
              [0,0,0,0,0,0.4,0.7,0.4,0,0,0,0,0,0]])

arr = []
for i in xrange(grid.shape[0] - 1):
    for j in xrange(grid.shape[1] - 1):
        tot = grid[i][j] + grid[i+1][j] + grid[i][j+1] + grid[i+1][j+1]
        arr.append([(i,j),tot])

best = []

arr.sort(key = lambda x: x[1])

for i in xrange(5):
    best.append(arr.pop())
    badpos = set([(best[-1][0][0]+x,best[-1][0][1]+y)
                  for x in [-1,0,1] for y in [-1,0,1] if x != 0 or y != 0])
    for j in xrange(len(arr)-1,-1,-1):
        if arr[j][0] in badpos:
            arr.pop(j)


for item in best:
    print grid[item[0][0]:item[0][0]+2,item[0][1]:item[0][1]+2]

我基本上只是用左上角的位置和每个2x2平方的和来做一个数组,然后根据和来排序。然后我把和最高的2x2平方从竞争中取出,把它放在最好的数组中,然后删除所有其他使用了这个2x2平方的部分的2x2平方。

It seems to work fine except with the last paw (the one with the smallest sum on the far right in your first picture), it turns out that there are two other eligible 2x2 squares with a larger sum (and they have an equal sum to each other). One of them is still selects one square from your 2x2 square, but the other is off to the left. Fortunately, by luck we see to be choosing more of the one that you would want, but this may require some other ideas to be used to get what you actually want all of the time.