我在帮助一家兽医诊所测量狗爪下的压力。我使用Python进行数据分析,现在我正试图将爪子划分为(解剖学上的)子区域。

我为每个爪子制作了一个2D数组,其中包括爪子随时间加载的每个传感器的最大值。这里有一个单爪的例子,我使用Excel绘制我想要“检测”的区域。传感器周围是2 * 2的方框带有局部最大值,它们加起来的和最大。

所以我尝试了一些实验,并决定简单地寻找每一列和每一行的最大值(由于爪子的形状,不能只看一个方向)。这似乎能很好地“检测”到不同脚趾的位置,但也能标记出相邻的传感器。

那么告诉Python哪些最大值是我想要的最好方法是什么呢?

注意:2x2的方块不能重叠,因为它们必须是分开的脚趾!

此外,我选择了2x2作为方便,任何更高级的解决方案都是受欢迎的,但我只是一个人类运动科学家,所以我既不是真正的程序员也不是数学家,所以请保持“简单”。

下面是一个可以用np.loadtxt加载的版本


结果

所以我尝试了@jextee的解决方案(见下面的结果)。正如你所看到的,它对前爪很有效,但对后腿就不那么有效了。

更具体地说,它无法识别第四个脚趾的小峰。这显然是固有的事实,即循环从上向下看最低值,而不考虑它在哪里。

有没有人知道如何调整@jextee的算法,让它也能找到第四个脚趾?

因为我还没有处理其他的试验,所以我无法提供其他的样品。但我之前给出的数据是每个爪子的平均值。这个文件是一个数组,其中包含9只爪子的最大数据,按照它们与盘子接触的顺序排列。

这张照片显示了它们在空间上是如何分布在板块上的。

更新:

我已经为任何感兴趣的人建立了一个博客,我已经设置了一个OneDrive与所有的原始测量。因此,对于任何要求更多数据的人:给你更多力量!


新更新:

所以在我得到关于爪子检测和爪子分类的问题的帮助后,我终于能够检查每个爪子的脚趾检测!事实证明,除了像我自己例子中那样大的爪子,它在其他地方都不太管用。当然,事后看来,是我自己的错,我这么武断地选择了2x2。

这里有一个很好的例子,它错在哪里:指甲被识别为脚趾,而“脚跟”太宽了,它被识别了两次!

爪子太大了,所以采用没有重叠的2x2尺寸,会导致一些脚趾被检测两次。反过来,在小型犬中,它经常找不到第5个脚趾,我怀疑这是由于2x2面积太大造成的。

在对我所有的测量都尝试了当前的解决方案后,我得出了一个惊人的结论,几乎所有的小狗都没有发现第5个脚趾,而在超过50%的大型狗的冲击中,它会发现更多!

显然我需要改变它。我自己的想法是改变社区的大小,让小狗住的地方更小,大狗住的地方更大。但是generate_binary_structure不允许我改变数组的大小。

因此,我希望其他人有更好的建议来定位脚趾,也许是脚趾面积与爪子大小的比例?


当前回答

我脑子里有几个想法:

取扫描的梯度(导数),看看是否消除了错误的调用 取局部极大值的最大值

你可能还想看看OpenCV,它有一个相当不错的Python API,可能有一些你会发现有用的函数。

其他回答

我用局部最大滤波器检测了峰值。下面是你的第一个4个爪子数据集的结果:

我还在9个爪子的第二个数据集上运行了它,效果也很好。

你可以这样做:

import numpy as np
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.morphology import generate_binary_structure, binary_erosion
import matplotlib.pyplot as pp

#for some reason I had to reshape. Numpy ignored the shape header.
paws_data = np.loadtxt("paws.txt").reshape(4,11,14)

#getting a list of images
paws = [p.squeeze() for p in np.vsplit(paws_data,4)]


def detect_peaks(image):
    """
    Takes an image and detect the peaks usingthe local maximum filter.
    Returns a boolean mask of the peaks (i.e. 1 when
    the pixel's value is the neighborhood maximum, 0 otherwise)
    """

    # define an 8-connected neighborhood
    neighborhood = generate_binary_structure(2,2)

    #apply the local maximum filter; all pixel of maximal value 
    #in their neighborhood are set to 1
    local_max = maximum_filter(image, footprint=neighborhood)==image
    #local_max is a mask that contains the peaks we are 
    #looking for, but also the background.
    #In order to isolate the peaks we must remove the background from the mask.

    #we create the mask of the background
    background = (image==0)

    #a little technicality: we must erode the background in order to 
    #successfully subtract it form local_max, otherwise a line will 
    #appear along the background border (artifact of the local maximum filter)
    eroded_background = binary_erosion(background, structure=neighborhood, border_value=1)

    #we obtain the final mask, containing only peaks, 
    #by removing the background from the local_max mask (xor operation)
    detected_peaks = local_max ^ eroded_background

    return detected_peaks


#applying the detection and plotting results
for i, paw in enumerate(paws):
    detected_peaks = detect_peaks(paw)
    pp.subplot(4,2,(2*i+1))
    pp.imshow(paw)
    pp.subplot(4,2,(2*i+2) )
    pp.imshow(detected_peaks)

pp.show()

之后你所需要做的就是在蒙版上使用scipy. nmage .measurements.label来标记所有不同的对象。然后你就可以单独和他们玩了。

注意,该方法工作得很好,因为背景没有噪声。如果是的话,你会在背景中检测到一堆其他不想要的峰。另一个重要因素是社区的大小。如果峰值大小发生变化,您将需要调整它(应该保持大致成比例)。

也许你可以使用高斯混合模型。这是一个用于执行GMMs的Python包(刚刚进行了谷歌搜索) http://www.ar.media.kyoto-u.ac.jp/members/david/softwares/em/

只是想告诉你们,有一个很好的选项可以用python在图像中找到局部最大值:

from skimage.feature import peak_local_max

或者对于skimage 0.8.0:

from skimage.feature.peak import peak_local_max

http://scikit-image.org/docs/0.8.0/api/skimage.feature.peak.html

也许一个简单的方法在这里就足够了:建立一个平面上所有2x2正方形的列表,按它们的和排序(降序)。

首先,在你的“爪子列表”中选择价值最高的方块。然后,迭代地选择4个次优正方形,这些正方形不与之前找到的任何正方形相交。

这里有一个想法:你计算图像的(离散)拉普拉斯量。我希望它在最大值处是(负的)大的,以一种比原始图像更引人注目的方式。因此,极大值更容易找到。

这里有另一个想法:如果你知道高压点的典型大小,你可以首先通过用相同大小的高斯函数卷积来平滑你的图像。这可能会让你更容易处理图像。