我必须在r中把一个向量分成n个相等大小的块,我找不到任何基函数来做这个。谷歌也没帮上什么忙。这是我目前想到的;
x <- 1:10
n <- 3
chunk <- function(x,n) split(x, factor(sort(rank(x)%%n)))
chunk(x,n)
$`0`
[1] 1 2 3
$`1`
[1] 4 5 6 7
$`2`
[1] 8 9 10
我必须在r中把一个向量分成n个相等大小的块,我找不到任何基函数来做这个。谷歌也没帮上什么忙。这是我目前想到的;
x <- 1:10
n <- 3
chunk <- function(x,n) split(x, factor(sort(rank(x)%%n)))
chunk(x,n)
$`0`
[1] 1 2 3
$`1`
[1] 4 5 6 7
$`2`
[1] 8 9 10
当前回答
我想出了这个解决方案:
require(magrittr)
create.chunks <- function(x, elements.per.chunk){
# plain R version
# split(x, rep(seq_along(x), each = elements.per.chunk)[seq_along(x)])
# magrittr version - because that's what people use now
x %>% seq_along %>% rep(., each = elements.per.chunk) %>% extract(seq_along(x)) %>% split(x, .)
}
create.chunks(letters[1:10], 3)
$`1`
[1] "a" "b" "c"
$`2`
[1] "d" "e" "f"
$`3`
[1] "g" "h" "i"
$`4`
[1] "j"
关键是要使用seq(each = chunk.size)参数,以便使其工作。在前面的解决方案中,使用seq_along的作用类似于rank(x),但实际上能够使用重复的条目产生正确的结果。
其他回答
你可以像mdsummer建议的那样,结合split/cut和quantile来创建偶数组:
split(x,cut(x,quantile(x,(0:n)/n), include.lowest=TRUE, labels=FALSE))
这为您的示例提供了相同的结果,但不适用于倾斜变量。
chunk2 <- function(x,n) split(x, cut(seq_along(x), n, labels = FALSE))
我需要相同的函数,并且已经阅读了以前的解决方案,但是我还需要在最后有不平衡的块,即如果我有10个元素将它们分成3个向量,那么我的结果应该分别有3,3,4个元素的向量。所以我使用了下面的代码(为了可读性,我没有对代码进行优化,否则不需要有很多变量):
chunk <- function(x,n){
numOfVectors <- floor(length(x)/n)
elementsPerVector <- c(rep(n,numOfVectors-1),n+length(x) %% n)
elemDistPerVector <- rep(1:numOfVectors,elementsPerVector)
split(x,factor(elemDistPerVector))
}
set.seed(1)
x <- rnorm(10)
n <- 3
chunk(x,n)
$`1`
[1] -0.6264538 0.1836433 -0.8356286
$`2`
[1] 1.5952808 0.3295078 -0.8204684
$`3`
[1] 0.4874291 0.7383247 0.5757814 -0.3053884
我需要一个接受数据参数的函数。Table(引号中)和另一个参数,该参数是原始data.table的子集中行数的上限。这个函数产生任意数量的数据。表的上限允许:
library(data.table)
split_dt <- function(x,y)
{
for(i in seq(from=1,to=nrow(get(x)),by=y))
{df_ <<- get(x)[i:(i + y)];
assign(paste0("df_",i),df_,inherits=TRUE)}
rm(df_,inherits=TRUE)
}
这个函数给出了一系列数据。命名为df_[number]的表,其起始行来自原始数据。表中的名称。最后一个数据。表可以很短,并且填满了NAs,所以你必须将其子集返回到任何剩下的数据。这种类型的函数很有用,因为某些GIS软件对您可以导入的地址引脚数量有限制。切片数据。不建议将表分成更小的块,但这可能是不可避免的。
简单的函数通过简单地使用索引来分割一个向量-不需要过于复杂
vsplit <- function(v, n) {
l = length(v)
r = l/n
return(lapply(1:n, function(i) {
s = max(1, round(r*(i-1))+1)
e = min(l, round(r*i))
return(v[s:e])
}))
}