有人能解释一下数据挖掘中分类和聚类的区别吗?

如果可以,请给出两者的例子以理解主旨。


当前回答

摘自《驯象人在行动》一书,我认为它很好地解释了两者的区别:

分类算法与聚类算法(如k-means算法)相关,但仍有很大不同。 分类算法是监督学习的一种形式,与无监督学习相反,无监督学习发生在聚类算法中。 监督学习算法是一种给出包含目标变量期望值的例子。无监督算法不会得到想要的答案,而是必须自己找到一些合理的答案。

其他回答

There are two definitions in data mining "Supervised" and "Unsupervised". When someone tells the computer, algorithm, code, ... that this thing is like an apple and that thing is like an orange, this is supervised learning and using supervised learning (like tags for each sample in a data set) for classifying the data, you'll get classification. But on the other hand if you let the computer find out what is what and differentiate between features of the given data set, in fact learning unsupervised, for classifying the data set this would be called clustering. In this case data that are fed to the algorithm don't have tags and the algorithm should find out different classes.

+分类: 给你一些新的数据,你必须为它们设置新的标签。

例如,一家公司希望对其潜在客户进行分类。当一个新客户来的时候,他们必须确定这个客户是否会购买他们的产品。

+集群: 你得到了一组历史交易记录,记录了谁买了什么。

通过使用聚类技术,您可以区分客户的细分。

分类 —预测类别标签 -根据训练集和类标签属性中的值(类标签)对数据进行分类(构造模型) —使用该模型对新数据进行分类

集群:数据对象的集合 —同一集群内彼此相似 —与其他集群中的对象不同

摘自《驯象人在行动》一书,我认为它很好地解释了两者的区别:

分类算法与聚类算法(如k-means算法)相关,但仍有很大不同。 分类算法是监督学习的一种形式,与无监督学习相反,无监督学习发生在聚类算法中。 监督学习算法是一种给出包含目标变量期望值的例子。无监督算法不会得到想要的答案,而是必须自己找到一些合理的答案。

我是一个数据挖掘的新手,但正如我的课本所说,分类应该是监督学习,而聚类应该是非监督学习。监督学习和无监督学习之间的区别可以在这里找到。