有人能解释一下数据挖掘中分类和聚类的区别吗?

如果可以,请给出两者的例子以理解主旨。


当前回答

如果你试图将大量的文件归档到你的书架上(根据日期或文件的其他规格),你是在分类。

如果要从这组工作表创建集群,则意味着工作表之间有一些类似的东西。

其他回答

我认为分类是将数据集中的记录分类为预定义的类,甚至是在运行中定义类。我认为这是任何有价值的数据挖掘的先决条件,我喜欢把它看作无监督学习,即在挖掘数据和分类作为一个很好的起点时,一个人不知道他/她在寻找什么

另一端的聚类属于监督学习,即一个人知道要寻找什么参数,它们之间的相关性以及关键水平。我认为这需要对统计学和数学有所了解

聚类的目的是在数据中找到组。“集群”是一个直观的概念,确实如此 没有严格的数学定义。一个集群的成员应该是 彼此相似,而与其他集群的成员不同。一个集群 算法对一个未标记的数据集Z进行操作,并在其上生成一个分区。

对于类和类标签, 类包含相似的对象,而来自不同类的对象 是不同的。有些类具有明确的含义,在最简单的情况下 相互排斥。例如,在签名验证中,签名为任意一种 真的或伪造的。真正的阶级是两者之一,不管我们可能不是 能根据观察到的特定特征正确猜测的。

分类

是根据从例子中学习,将预定义的类分配给新的观察结果。

这是机器学习的关键任务之一。

聚类(或聚类分析)

尽管被普遍认为是“无监督分类”,但它完全不同。

与许多机器学习者教你的不同,它不是将“类”分配给对象,而是没有预先定义它们。这是做了太多分类的人的有限观点;一个典型的例子,如果你有一个锤子(分类器),所有的东西对你来说都像钉子(分类问题)。但这也是为什么从事分类的人没有掌握聚类的诀窍。

相反,可以将其视为结构发现。聚类的任务是在你的数据中找到你以前不知道的结构(例如组)。如果您学习了一些新的东西,那么群集是成功的。如果你只知道你已经知道的结构,它就失败了。

聚类分析是数据挖掘的关键任务(也是机器学习中的丑小鸭,所以不要相信机器学习者对聚类的否定)。

“无监督学习”有点矛盾

这在文献中反复出现,但无监督学习是该死的。它并不存在,但它就像“军事情报”一样自相矛盾。

算法要么从例子中学习(那么它就是“监督学习”),要么不学习。如果所有的聚类方法都是“学习”,那么计算一个数据集的最小值、最大值和平均值也是“无监督学习”。然后任何计算“学习”它的输出。因此,术语“无监督学习”是完全没有意义的,它意味着一切和什么都不是。

Some "unsupervised learning" algorithms do, however, fall into the optimization category. For example k-means is a least-squares optimization. Such methods are all over statistics, so I don't think we need to label them "unsupervised learning", but instead should continue to call them "optimization problems". It's more precise, and more meaningful. There are plenty of clustering algorithms who do not involve optimization, and who do not fit into machine-learning paradigms well. So stop squeezing them in there under the umbrella "unsupervised learning".

有一些与集群相关的“学习”,但学习的不是程序。用户应该学习关于他的数据集的新东西。

分类:在离散输出中预测结果=>映射输入变量到离散类别

常用用例:

电子邮件分类:垃圾邮件或非垃圾邮件 制裁贷款给客户:是的,如果他有能力支付制裁贷款金额的EMI。不行就不行 癌症肿瘤细胞鉴定:是关键还是非关键? 推文的情感分析:推文是积极的、消极的还是中性的 新闻分类:将新闻分类为预定义的类-政治,体育,健康等

聚类:是对一组对象进行分组,使同一组(称为聚类)中的对象彼此之间(在某种意义上)比其他组(聚类)中的对象更相似。

常用用例:

营销:发现客户细分市场的营销目的 生物学:植物和动物的不同种类的分类 图书馆:根据主题和信息对不同的书籍进行聚类 保险:了解客户、他们的政策并识别欺诈行为 城市规划:将房屋分组,并根据其地理位置和其他因素研究其价值。 地震研究:确定危险区 推荐系统:

引用:

Geeksforgeeks

数据有志者

3叶节点

I am sure a number of you have heard about machine learning. A dozen of you might even know what it is. And a couple of you might have worked with machine learning algorithms too.  You see where this is going? Not a lot of people are familiar with the technology that will be absolutely essential 5 years from now. Siri is machine learning. Amazon’s Alexa is machine learning. Ad and shopping item recommender systems are machine learning.  Let’s try to understand machine learning with a simple analogy of a 2 year old boy. Just for fun, let’s call him Kylo Ren

让我们假设凯洛·伦看到了一头大象。他的大脑会告诉他什么?(记住,即使他是维德的继任者,他也只有最低限度的思考能力)。他的大脑会告诉他,他看到了一个巨大的移动生物,颜色是灰色的。接着他看到一只猫,他的大脑告诉他那是一只会动的金色小动物。最后,他看到了一把光剑,他的大脑告诉他,这是一个无生命的物体,他可以玩!

此时他的大脑知道,军刀不同于大象和猫,因为军刀是用来玩的,不会自己移动。即使凯洛不知道移动是什么意思,他的大脑也能想出这么多。这个简单的现象叫做聚类。

机器学习只不过是这个过程的数学版本。 很多研究统计学的人意识到,他们可以用大脑工作的方式来计算一些方程。 大脑可以聚类相似的物体,大脑可以从错误中学习,大脑可以学习识别事物。

所有这些都可以用统计数据来表示,基于计算机模拟的这一过程被称为机器学习。为什么我们需要基于计算机的模拟?因为计算机比人脑更快地完成繁重的数学运算。 我很想进入机器学习的数学/统计部分,但在没有明确一些概念之前,你不会想直接进入。

Let’s get back to Kylo Ren. Let’s say Kylo picks up the saber and starts playing with it. He accidentally hits a stormtrooper and the stormtrooper gets injured. He doesn’t understand what’s going on and continues playing. Next he hits a cat and the cat gets injured. This time Kylo is sure he has done something bad, and tries to be somewhat careful. But given his bad saber skills, he hits the elephant and is absolutely sure that he is in trouble.  He becomes extremely careful thereafter, and only hits his dad on purpose as we saw in Force Awakens!!

从错误中学习的整个过程可以用方程式来模拟,在方程式中,做错事的感觉用错误或代价来表示。这种识别不该用军刀做什么的过程叫做分类。 聚类和分类是机器学习的绝对基础。让我们看看它们之间的区别。

Kylo differentiated between animals and light saber because his brain decided that light sabers cant move by themselves and are therefore, different. The decision was based solely upon the objects present (data) and no external help or advice was provided.  In contrast to this, Kylo differentiated the importance of being careful with light saber by first observing what hitting an object can do. The decision wasn’t completely based on the saber, but on what it could do to different objects . In short, there was some help here.

Because of this difference in learning, Clustering is called an unsupervised learning method and Classification is called a supervised learning method.  They are very different in the machine learning world, and are often dictated by the kind of data present. Obtaining labelled data (or things that help us learn , like stormtrooper,elephant and cat in Kylo’s case) is often not easy and becomes very complicated when the data to be differentiated is large. On the other hand, learning without labels can have it’s own disadvantages , like not knowing what are the label titles.  If Kylo was to learn being careful with the saber without any examples or help, he wouldn’t know what it would do. He would just know that it is not suppose to be done. It’s kind of a lame analogy but you get the point!

We are just getting started with Machine Learning. Classification itself can be classification of continuous numbers or classification of labels. For instance, if Kylo had to classify what each stormtrooper’s height is, there would be a lot of answers because the heights can be 5.0, 5.01, 5.011, etc. But a simple classification like types of light sabers (red,blue.green) would have very limited answers. Infact they can be represented with simple numbers. Red can be 0 , Blue can be 1 and Green can be 2.

如果你懂基础数学,你就知道0、1、2和5.1、5.01、5.011是不同的,分别被称为离散数和连续数。离散数的分类称为逻辑回归,连续数的分类称为回归。 逻辑回归也被称为分类分类,所以当你在其他地方读到这个术语时不要感到困惑

这是关于机器学习的一个非常基础的介绍。我将在下一篇文章中详细讨论统计方面的问题。如果我需要更正,请告诉我:)

第二部分张贴在这里。