有人能解释一下数据挖掘中分类和聚类的区别吗?
如果可以,请给出两者的例子以理解主旨。
有人能解释一下数据挖掘中分类和聚类的区别吗?
如果可以,请给出两者的例子以理解主旨。
当前回答
分类——数据集可以有不同的组/类。红色,绿色和黑色。分类将试图找到将它们划分为不同类别的规则。
聚类——如果一个数据集没有任何类,而你想把它们放在某个类/分组中,你就可以进行聚类。上面紫色的圆圈。
如果分类规则不好,你就会在测试中出现错误分类,或者你的规则不够正确。 如果聚类不好,你会有很多异常值。不能落在任何集群中的数据点。
其他回答
通常,在分类中,您有一组预定义的类,并希望知道新对象属于哪个类。
聚类尝试将一组对象分组,并发现对象之间是否存在某种关系。
在机器学习的背景下,分类是监督学习,聚类是无监督学习。
也可以看看维基百科上的分类和聚类。
+分类: 给你一些新的数据,你必须为它们设置新的标签。
例如,一家公司希望对其潜在客户进行分类。当一个新客户来的时候,他们必须确定这个客户是否会购买他们的产品。
+集群: 你得到了一组历史交易记录,记录了谁买了什么。
通过使用聚类技术,您可以区分客户的细分。
通过聚类,可以用所需的属性(如数量、形状和提取的聚类的其他属性)对数据进行分组。而在分类中,组的数量和形状是固定的。 大多数聚类算法都给出了聚类个数作为参数。然而,有一些方法可以找出合适的集群数量。
我是一个数据挖掘的新手,但正如我的课本所说,分类应该是监督学习,而聚类应该是非监督学习。监督学习和无监督学习之间的区别可以在这里找到。
分类一行:
将数据分类为预定义的类别
用于集群的一行代码:
将数据分组到一组类别中
关键的区别:
分类是获取数据并将其放入预定义的类别中,而在聚类中,您想将数据分组到的类别集是事先不知道的。
结论:
Classification assigns the category to 1 new item, based on already labeled items while Clustering takes a bunch of unlabeled items and divide them into the categories In Classification, the categories\groups to be divided are known beforehand while in Clustering, the categories\groups to be divided are unknown beforehand In Classification, there are 2 phases – Training phase and then the test phase while in Clustering, there is only 1 phase – dividing of training data in clusters Classification is Supervised Learning while Clustering is Unsupervised Learning
我写了一篇关于同一主题的长文章,你可以在这里找到:
https://neelbhatt40.wordpress.com/2017/11/21/classification-and-clustering-machine-learning-interview-questions-answers-part-i/