什么是甲状腺?它们用于什么?


当前回答

>>> class ObjectCreator(object):
...       pass

>>> my_object = ObjectCreator()
>>> print(my_object)
<__main__.ObjectCreator object at 0x8974f2c>

>>> class ObjectCreator(object):
...       pass

>>> print(JustAnotherVariable)
<class '__main__.ObjectCreator'>

>>> print(JustAnotherVariable())
<__main__.ObjectCreator object at 0x8997b4c>

>>> def choose_class(name):
...     if name == 'foo':
...         class Foo(object):
...             pass
...         return Foo # return the class, not an instance
...     else:
...         class Bar(object):
...             pass
...         return Bar
...
>>> MyClass = choose_class('foo')
>>> print(MyClass) # the function returns a class, not an instance
<class '__main__.Foo'>
>>> print(MyClass()) # you can create an object from this class
<__main__.Foo object at 0x89c6d4c>

>>> print(type(1))
<type 'int'>
>>> print(type("1"))
<type 'str'>
>>> print(type(ObjectCreator))
<type 'type'>
>>> print(type(ObjectCreator()))
<class '__main__.ObjectCreator'>

type(name, bases, attrs)

>>> class MyShinyClass(object):
...       pass

>>> MyShinyClass = type('MyShinyClass', (), {}) # returns a class object
>>> print(MyShinyClass)
<class '__main__.MyShinyClass'>
>>> print(MyShinyClass()) # create an instance with the class
<__main__.MyShinyClass object at 0x8997cec>

>>> class Foo(object):
...       bar = True

>>> Foo = type('Foo', (), {'bar':True})

>>> print(Foo)
<class '__main__.Foo'>
>>> print(Foo.bar)
True
>>> f = Foo()
>>> print(f)
<__main__.Foo object at 0x8a9b84c>
>>> print(f.bar)
True

>>>   class FooChild(Foo):
...         pass

>>> FooChild = type('FooChild', (Foo,), {})
>>> print(FooChild)
<class '__main__.FooChild'>
>>> print(FooChild.bar) # bar is inherited from Foo
True

>>> def echo_bar(self):
...       print(self.bar)
...
>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True

>>> def echo_bar_more(self):
...       print('yet another method')
...
>>> FooChild.echo_bar_more = echo_bar_more
>>> hasattr(FooChild, 'echo_bar_more')
True

MyClass = MetaClass()
my_object = MyClass()

MyClass = type('MyClass', (), {})

>>> age = 35
>>> age.__class__
<type 'int'>
>>> name = 'bob'
>>> name.__class__
<type 'str'>
>>> def foo(): pass
>>> foo.__class__
<type 'function'>
>>> class Bar(object): pass
>>> b = Bar()
>>> b.__class__
<class '__main__.Bar'>

>>> age.__class__.__class__
<type 'type'>
>>> name.__class__.__class__
<type 'type'>
>>> foo.__class__.__class__
<type 'type'>
>>> b.__class__.__class__
<type 'type'>

class Foo(object):
    __metaclass__ = something...
    [...]

class Foo(Bar):
    pass

设置 meta 类的合成已在 Python 3 中更改:

class Foo(object, metaclass=something):
    ...

class Foo(object, metaclass=something, kwarg1=value1, kwarg2=value2):
    ...

# the metaclass will automatically get passed the same argument
# that you usually pass to `type`
def upper_attr(future_class_name, future_class_parents, future_class_attrs):
    """
      Return a class object, with the list of its attribute turned
      into uppercase.
    """
    # pick up any attribute that doesn't start with '__' and uppercase it
    uppercase_attrs = {
        attr if attr.startswith("__") else attr.upper(): v
        for attr, v in future_class_attrs.items()
    }

    # let `type` do the class creation
    return type(future_class_name, future_class_parents, uppercase_attrs)

__metaclass__ = upper_attr # this will affect all classes in the module

class Foo(): # global __metaclass__ won't work with "object" though
    # but we can define __metaclass__ here instead to affect only this class
    # and this will work with "object" children
    bar = 'bip'

>>> hasattr(Foo, 'bar')
False
>>> hasattr(Foo, 'BAR')
True
>>> Foo.BAR
'bip'

# remember that `type` is actually a class like `str` and `int`
# so you can inherit from it
class UpperAttrMetaclass(type):
    # __new__ is the method called before __init__
    # it's the method that creates the object and returns it
    # while __init__ just initializes the object passed as parameter
    # you rarely use __new__, except when you want to control how the object
    # is created.
    # here the created object is the class, and we want to customize it
    # so we override __new__
    # you can do some stuff in __init__ too if you wish
    # some advanced use involves overriding __call__ as well, but we won't
    # see this
    def __new__(upperattr_metaclass, future_class_name,
                future_class_parents, future_class_attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in future_class_attrs.items()
        }
        return type(future_class_name, future_class_parents, uppercase_attrs)

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }
        return type(clsname, bases, uppercase_attrs)

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }
        return type.__new__(cls, clsname, bases, uppercase_attrs)

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }

        # Python 2 requires passing arguments to super:
        return super(UpperAttrMetaclass, cls).__new__(
            cls, clsname, bases, uppercase_attrs)

        # Python 3 can use no-arg super() which infers them:
        return super().__new__(cls, clsname, bases, uppercase_attrs)

class Foo(object, metaclass=MyMetaclass, kwarg1=value1):
    ...

class MyMetaclass(type):
    def __new__(cls, clsname, bases, dct, kwargs1=default):
        ...

使用金属玻璃代码的复杂性背后的原因不是由于金属玻璃,而是因为你通常使用金属玻璃来制作依赖于入观、操纵遗产、如 __dict__ 等的旋转物品。

有几个理由这样做:

為什麼要使用MetaClass?

现在,大问题:为什么你会使用一些模糊的错误漏洞功能?

如果你想知道你是否需要它们,你不会(真正需要它们的人肯定知道他们需要它们,不需要解释为什么)。

Python Guru 蒂姆·彼得斯

class Person(models.Model):
    name = models.CharField(max_length=30)
    age = models.IntegerField()

person = Person(name='bob', age='35')
print(person.age)

最后一句话

首先,你知道,类是可以创造例子的物体。

>>> class Foo(object): pass
>>> id(Foo)
142630324

99%的时间你需要课堂变化,你更好地使用这些。

但98%的时间,你根本不需要课堂变化。

其他回答

型()函数可以返回对象的类型或创建一个新的类型,

例如,我们可以使用类()函数创建一个 Hi 类,并且不需要使用类 Hi(对象):

def func(self, name='mike'):
    print('Hi, %s.' % name)

Hi = type('Hi', (object,), dict(hi=func))
h = Hi()
h.hi()
Hi, mike.

type(Hi)
type

type(h)
__main__.Hi

除了使用类()以动态创建类,您还可以控制类的创建行为,并使用甲塔克拉斯。

根据 Python 对象模型,类是对象,所以类必须是另一个特定的类的例子. 默认情况下, Python 类是类类类的例子. 也就是说,类是大多数内置类的甲型类和用户定义类的甲型类。

class ListMetaclass(type):
    def __new__(cls, name, bases, attrs):
        attrs['add'] = lambda self, value: self.append(value)
        return type.__new__(cls, name, bases, attrs)

class CustomList(list, metaclass=ListMetaclass):
    pass

lst = CustomList()
lst.add('custom_list_1')
lst.add('custom_list_2')

lst
['custom_list_1', 'custom_list_2']

魔法将有效,当我们通过关键词论点在Metaclass,它指示Python翻译器通过ListMetaclass创建CustomList。新(),在此时,我们可以修改类定义,例如,并添加一个新的方法,然后返回修订的定义。

Metaclasses 是做“类”的工作的秘密酱油,新风格对象的默认 metaclass 被称为“类型”。

class type(object)
  |  type(object) -> the object's type
  |  type(name, bases, dict) -> a new type

Metaclasses 取 3 args. 'name', 'bases' 和 'dict'

查找这个例子类定义中的名称、基础和字符号来源于哪里。

class ThisIsTheName(Bases, Are, Here):
    All_the_code_here
    def doesIs(create, a):
        dict

def test_metaclass(name, bases, dict):
    print 'The Class Name is', name
    print 'The Class Bases are', bases
    print 'The dict has', len(dict), 'elems, the keys are', dict.keys()

    return "yellow"

class TestName(object, None, int, 1):
    __metaclass__ = test_metaclass
    foo = 1
    def baz(self, arr):
        pass

print 'TestName = ', repr(TestName)

# output => 
The Class Name is TestName
The Class Bases are (<type 'object'>, None, <type 'int'>, 1)
The dict has 4 elems, the keys are ['baz', '__module__', 'foo', '__metaclass__']
TestName =  'yellow'

现在,一个实际上意味着什么的例子,这将自动使列表中的变量“属性”设置在课堂上,并设置为无。

def init_attributes(name, bases, dict):
    if 'attributes' in dict:
        for attr in dict['attributes']:
            dict[attr] = None

    return type(name, bases, dict)

class Initialised(object):
    __metaclass__ = init_attributes
    attributes = ['foo', 'bar', 'baz']

print 'foo =>', Initialised.foo
# output=>
foo => None

请注意,启动者获得的魔法行为是通过拥有金属类的 init_属性而没有转移到启动者的子类。

这里是一个更具体的例子,显示如何可以创建一个在创建一个类时执行一个行动的甲型类的“类型”。

class MetaSingleton(type):
    instance = None
    def __call__(cls, *args, **kw):
        if cls.instance is None:
            cls.instance = super(MetaSingleton, cls).__call__(*args, **kw)
        return cls.instance

class Foo(object):
    __metaclass__ = MetaSingleton

a = Foo()
b = Foo()
assert a is b

看这:

Python 3.10.0rc2 (tags/v3.10.0rc2:839d789, Sep  7 2021, 18:51:45) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> class Object:
...     pass
... 
>>> class Meta(type):
...     test = 'Worked!!!'
...     def __repr__(self):
...             return 'This is "Meta" metaclass'
... 
>>> class ObjectWithMetaClass(metaclass=Meta):
...     pass
... 
>>> Object or type(Object())
<class '__main__.Object'>
>>> ObjectWithMetaClass or type(ObjectWithMetaClass())
This is "Meta" metaclass
>>> Object.test
AttributeError: ...
>>> ObjectWithMetaClass.test
'Worked!!!'
>>> type(Object)
<class 'type'>
>>> type(ObjectWithMetaClass)
<class '__main__.Meta'>
>>> type(type(ObjectWithMetaClass))
<class 'type'>
>>> Object.__bases__
(<class 'object'>,)
>>> ObjectWithMetaClass.__bases__
(<class 'object'>,)
>>> type(ObjectWithMetaClass).__bases__
(<class 'type'>,)
>>> Object.__mro__
(<class '__main__.Object'>, <class 'object'>)
>>> ObjectWithMetaClass.__mro__
(This is "Meta" metaclass, <class 'object'>)
>>> 

换句话说,当一个对象没有创建(对象类型),我们正在寻找MetaClass。

除了发布的答案,我可以说,一个甲状腺可以定义一个类的行为,所以,你可以明确设置你的甲状腺,每当Python获得一个关键词类,然后它开始搜索甲状腺,如果它没有找到 - 默认甲状腺类型用于创建一个类的对象,使用 __metaclass__属性,你可以设置你的甲状腺类:

class MyClass:
   __metaclass__ = type
   # write here other method
   # write here one more method

print(MyClass.__metaclass__)

它将产生这样的产量:

class 'type'

当然,你可以创建自己的金属类来定义使用你的类创建的任何类的行为。

要做到这一点,您的默认金属类型类必须继承,因为这是主要金属类:

class MyMetaClass(type):
   __metaclass__ = type
   # you can write here any behaviour you want

class MyTestClass:
   __metaclass__ = MyMetaClass

Obj = MyTestClass()
print(Obj.__metaclass__)
print(MyMetaClass.__metaclass__)

产量将是:

class '__main__.MyMetaClass'
class 'type'

甲特克拉斯(甲特克拉斯)是一类,讲述了(某些)其他类应该是如何形成的。

这是一个案例,我看到甲状腺作为解决我的问题:我有一个真正复杂的问题,可能可以是不同的解决,但我选择用甲状腺解决它。 由于复杂性,这是我写的几个模块之一,在模块上的评论超过了编写的代码的数量。

#!/usr/bin/env python

# Copyright (C) 2013-2014 Craig Phillips.  All rights reserved.

# This requires some explaining.  The point of this metaclass excercise is to
# create a static abstract class that is in one way or another, dormant until
# queried.  I experimented with creating a singlton on import, but that did
# not quite behave how I wanted it to.  See now here, we are creating a class
# called GsyncOptions, that on import, will do nothing except state that its
# class creator is GsyncOptionsType.  This means, docopt doesn't parse any
# of the help document, nor does it start processing command line options.
# So importing this module becomes really efficient.  The complicated bit
# comes from requiring the GsyncOptions class to be static.  By that, I mean
# any property on it, may or may not exist, since they are not statically
# defined; so I can't simply just define the class with a whole bunch of
# properties that are @property @staticmethods.
#
# So here's how it works:
#
# Executing 'from libgsync.options import GsyncOptions' does nothing more
# than load up this module, define the Type and the Class and import them
# into the callers namespace.  Simple.
#
# Invoking 'GsyncOptions.debug' for the first time, or any other property
# causes the __metaclass__ __getattr__ method to be called, since the class
# is not instantiated as a class instance yet.  The __getattr__ method on
# the type then initialises the class (GsyncOptions) via the __initialiseClass
# method.  This is the first and only time the class will actually have its
# dictionary statically populated.  The docopt module is invoked to parse the
# usage document and generate command line options from it.  These are then
# paired with their defaults and what's in sys.argv.  After all that, we
# setup some dynamic properties that could not be defined by their name in
# the usage, before everything is then transplanted onto the actual class
# object (or static class GsyncOptions).
#
# Another piece of magic, is to allow command line options to be set in
# in their native form and be translated into argparse style properties.
#
# Finally, the GsyncListOptions class is actually where the options are
# stored.  This only acts as a mechanism for storing options as lists, to
# allow aggregation of duplicate options or options that can be specified
# multiple times.  The __getattr__ call hides this by default, returning the
# last item in a property's list.  However, if the entire list is required,
# calling the 'list()' method on the GsyncOptions class, returns a reference
# to the GsyncListOptions class, which contains all of the same properties
# but as lists and without the duplication of having them as both lists and
# static singlton values.
#
# So this actually means that GsyncOptions is actually a static proxy class...
#
# ...And all this is neatly hidden within a closure for safe keeping.
def GetGsyncOptionsType():
    class GsyncListOptions(object):
        __initialised = False

    class GsyncOptionsType(type):
        def __initialiseClass(cls):
            if GsyncListOptions._GsyncListOptions__initialised: return

            from docopt import docopt
            from libgsync.options import doc
            from libgsync import __version__

            options = docopt(
                doc.__doc__ % __version__,
                version = __version__,
                options_first = True
            )

            paths = options.pop('<path>', None)
            setattr(cls, "destination_path", paths.pop() if paths else None)
            setattr(cls, "source_paths", paths)
            setattr(cls, "options", options)

            for k, v in options.iteritems():
                setattr(cls, k, v)

            GsyncListOptions._GsyncListOptions__initialised = True

        def list(cls):
            return GsyncListOptions

        def __getattr__(cls, name):
            cls.__initialiseClass()
            return getattr(GsyncListOptions, name)[-1]

        def __setattr__(cls, name, value):
            # Substitut option names: --an-option-name for an_option_name
            import re
            name = re.sub(r'^__', "", re.sub(r'-', "_", name))
            listvalue = []

            # Ensure value is converted to a list type for GsyncListOptions
            if isinstance(value, list):
                if value:
                    listvalue = [] + value
                else:
                    listvalue = [ None ]
            else:
                listvalue = [ value ]

            type.__setattr__(GsyncListOptions, name, listvalue)

    # Cleanup this module to prevent tinkering.
    import sys
    module = sys.modules[__name__]
    del module.__dict__['GetGsyncOptionsType']

    return GsyncOptionsType

# Our singlton abstract proxy class.
class GsyncOptions(object):
    __metaclass__ = GetGsyncOptionsType()