什么是甲状腺?它们用于什么?
当前回答
上面的答案是正确的。
但读者可能来到这里寻找关于类似名称的内部课程的答案,他们在受欢迎的图书馆,如Django和WTForms。
相反,这些是班级的命令之内的名称空间,它们是用内部班级为可读性而建造的。
在这个特殊的例子领域,抽象是显而易见地与作者模型的领域分开。
from django.db import models
class Author(models.Model):
name = models.CharField(max_length=50)
email = models.EmailField()
class Meta:
abstract = True
另一个例子是WTForms的文档:
from wtforms.form import Form
from wtforms.csrf.session import SessionCSRF
from wtforms.fields import StringField
class MyBaseForm(Form):
class Meta:
csrf = True
csrf_class = SessionCSRF
name = StringField("name")
这个合成不会在Python编程语言中得到特别的处理. Meta 不是这里的一个关键词,也不会引发 meta 类行为. 相反,第三方图书馆代码在 Django 和 WTForms 等包中,在某些类的构建者和其他地方读到这个属性。
这些声明的存在改变了具有这些声明的类别的行为. 例如,WTForms 阅读 self.Meta.csrf 以确定表格是否需要一个 csrf 字段。
其他回答
什么是Metaclasses?你用它们用于什么?
>>> Class(...)
instance
>>> Metaclass(...)
Class
>>> type('Foo', (object,), {}) # requires a name, bases, and a namespace
<class '__main__.Foo'>
每当你创建一个类时,你都会使用一个类型:
class Foo(object):
'demo'
>>> Foo
<class '__main__.Foo'>
>>> isinstance(Foo, type), isinstance(Foo, object)
(True, True)
name = 'Foo'
bases = (object,)
namespace = {'__doc__': 'demo'}
Foo = type(name, bases, namespace)
>>> Foo.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'Foo' objects>,
'__module__': '__main__', '__weakref__': <attribute '__weakref__'
of 'Foo' objects>, '__doc__': 'demo'})
(在 __dict__: __module__ 类的内容上有一个侧笔记,因为类必须知道它们在哪里定义,而 __dict__ 和 __weakref__ 是因为我们不定义 __slots__ - 如果我们定义 __slots__ 我们会在例子中节省一些空间,因为我们可以通过排除它们来排除 __dict__ 和 __weakref__。
>>> Baz = type('Bar', (object,), {'__doc__': 'demo', '__slots__': ()})
>>> Baz.__dict__
mappingproxy({'__doc__': 'demo', '__slots__': (), '__module__': '__main__'})
我们可以像任何其他类定义一样扩展类型:
>>> Foo
<class '__main__.Foo'>
class Type(type):
def __repr__(cls):
"""
>>> Baz
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
>>> eval(repr(Baz))
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
"""
metaname = type(cls).__name__
name = cls.__name__
parents = ', '.join(b.__name__ for b in cls.__bases__)
if parents:
parents += ','
namespace = ', '.join(': '.join(
(repr(k), repr(v) if not isinstance(v, type) else v.__name__))
for k, v in cls.__dict__.items())
return '{0}(\'{1}\', ({2}), {{{3}}})'.format(metaname, name, parents, namespace)
def __eq__(cls, other):
"""
>>> Baz == eval(repr(Baz))
True
"""
return (cls.__name__, cls.__bases__, cls.__dict__) == (
other.__name__, other.__bases__, other.__dict__)
>>> class Bar(object): pass
>>> Baz = Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
>>> Baz
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
但是,与 eval(repr(Class))的进一步检查是不可能的(因为函数将是相当不可能从他们的默认 __repr__ 的 eval 。
from collections import OrderedDict
class OrderedType(Type):
@classmethod
def __prepare__(metacls, name, bases, **kwargs):
return OrderedDict()
def __new__(cls, name, bases, namespace, **kwargs):
result = Type.__new__(cls, name, bases, dict(namespace))
result.members = tuple(namespace)
return result
class OrderedMethodsObject(object, metaclass=OrderedType):
def method1(self): pass
def method2(self): pass
def method3(self): pass
def method4(self): pass
>>> OrderedMethodsObject.members
('__module__', '__qualname__', 'method1', 'method2', 'method3', 'method4')
>>> inspect.getmro(OrderedType)
(<class '__main__.OrderedType'>, <class '__main__.Type'>, <class 'type'>, <class 'object'>)
而且它大约有正确的回报(除非我们能找到代表我们的功能的方式,否则我们就不能再评估):
>>> OrderedMethodsObject
OrderedType('OrderedMethodsObject', (object,), {'method1': <function OrderedMethodsObject.method1 at 0x0000000002DB01E0>, 'members': ('__module__', '__qualname__', 'method1', 'method2', 'method3', 'method4'), 'method3': <function OrderedMet
hodsObject.method3 at 0x0000000002DB02F0>, 'method2': <function OrderedMethodsObject.method2 at 0x0000000002DB0268>, '__module__': '__main__', '__weakref__': <attribute '__weakref__' of 'OrderedMethodsObject' objects>, '__doc__': None, '__d
ict__': <attribute '__dict__' of 'OrderedMethodsObject' objects>, 'method4': <function OrderedMethodsObject.method4 at 0x0000000002DB0378>})
在以对象为导向的编程中,一个代码类是一种类,其例子是类。 正如普通类定义某些对象的行为一样,一个代码类定义某些类的行为和其例子 这个术语的代码类简单地意味着用于创建类的东西。
一个用途是自动将新属性和方法添加到一个例子。
例如,如果你看 Django 模型,它们的定义看起来有点困惑。
class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)
然而,在工作时间里,人体对象充满了各种有用的方法。
# define a class
class SomeClass(object):
# ...
# some definition here ...
# ...
# create an instance of it
instance = SomeClass()
# then call the object as if it's a function
result = instance('foo', 'bar')
class SomeClass(object):
# ...
# some definition here ...
# ...
def __call__(self, foo, bar):
return bar + foo
但是,正如我们从以前的答案中看到的那样,一个类本身就是一个金属类的例子,所以当我们使用这个类作为一个金属类(即当我们创建一个例子时),我们实际上称它为金属类的 __call__() 方法。
class Meta_1(type):
def __call__(cls):
print "Meta_1.__call__() before creating an instance of ", cls
instance = super(Meta_1, cls).__call__()
print "Meta_1.__call__() about to return instance."
return instance
这是一个使用这个MetaClass的班级。
class Class_1(object):
__metaclass__ = Meta_1
def __new__(cls):
print "Class_1.__new__() before creating an instance."
instance = super(Class_1, cls).__new__(cls)
print "Class_1.__new__() about to return instance."
return instance
def __init__(self):
print "entering Class_1.__init__() for instance initialization."
super(Class_1,self).__init__()
print "exiting Class_1.__init__()."
现在,让我们创建一个类_1的例子。
instance = Class_1()
# Meta_1.__call__() before creating an instance of <class '__main__.Class_1'>.
# Class_1.__new__() before creating an instance.
# Class_1.__new__() about to return instance.
# entering Class_1.__init__() for instance initialization.
# exiting Class_1.__init__().
# Meta_1.__call__() about to return instance.
class type:
def __call__(cls, *args, **kwarg):
# ... maybe a few things done to cls here
# then we call __new__() on the class to create an instance
instance = cls.__new__(cls, *args, **kwargs)
# ... maybe a few things done to the instance here
# then we initialize the instance with its __init__() method
instance.__init__(*args, **kwargs)
# ... maybe a few more things done to instance here
# then we return it
return instance
从上述情况下,它表明,MetaClass的 __call__() 还有机会决定是否会最终对 Class_1.__new__() 或 Class_1.__init__() 进行呼叫。在执行过程中,它实际上可以返回没有被这些方法触摸的对象。
class Meta_2(type):
singletons = {}
def __call__(cls, *args, **kwargs):
if cls in Meta_2.singletons:
# we return the only instance and skip a call to __new__()
# and __init__()
print ("{} singleton returning from Meta_2.__call__(), "
"skipping creation of new instance.".format(cls))
return Meta_2.singletons[cls]
# else if the singleton isn't present we proceed as usual
print "Meta_2.__call__() before creating an instance."
instance = super(Meta_2, cls).__call__(*args, **kwargs)
Meta_2.singletons[cls] = instance
print "Meta_2.__call__() returning new instance."
return instance
class Class_2(object):
__metaclass__ = Meta_2
def __new__(cls, *args, **kwargs):
print "Class_2.__new__() before creating instance."
instance = super(Class_2, cls).__new__(cls)
print "Class_2.__new__() returning instance."
return instance
def __init__(self, *args, **kwargs):
print "entering Class_2.__init__() for initialization."
super(Class_2, self).__init__()
print "exiting Class_2.__init__()."
让我们来看看在重复试图创建类型Class_2的对象时会发生什么。
a = Class_2()
# Meta_2.__call__() before creating an instance.
# Class_2.__new__() before creating instance.
# Class_2.__new__() returning instance.
# entering Class_2.__init__() for initialization.
# exiting Class_2.__init__().
# Meta_2.__call__() returning new instance.
b = Class_2()
# <class '__main__.Class_2'> singleton returning from Meta_2.__call__(), skipping creation of new instance.
c = Class_2()
# <class '__main__.Class_2'> singleton returning from Meta_2.__call__(), skipping creation of new instance.
a is b is c # True
简而言之:一类是创建一个例子的图标,一类是创建一个类的图标,可以很容易地看到,在Python类中,也需要第一类对象才能实现这种行为。
我从来没有自己写过一个,但我认为在Django框架中可以看到最可爱的用途之一。模型类使用一个模型类的方法,以允许写新的模型或形式类的宣言风格。
剩下的就是:如果你不知道什么是金属玻璃,那么你不需要它们的可能性是99%。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录