什么是甲状腺?它们用于什么?
当前回答
上面的答案是正确的。
但读者可能来到这里寻找关于类似名称的内部课程的答案,他们在受欢迎的图书馆,如Django和WTForms。
相反,这些是班级的命令之内的名称空间,它们是用内部班级为可读性而建造的。
在这个特殊的例子领域,抽象是显而易见地与作者模型的领域分开。
from django.db import models
class Author(models.Model):
name = models.CharField(max_length=50)
email = models.EmailField()
class Meta:
abstract = True
另一个例子是WTForms的文档:
from wtforms.form import Form
from wtforms.csrf.session import SessionCSRF
from wtforms.fields import StringField
class MyBaseForm(Form):
class Meta:
csrf = True
csrf_class = SessionCSRF
name = StringField("name")
这个合成不会在Python编程语言中得到特别的处理. Meta 不是这里的一个关键词,也不会引发 meta 类行为. 相反,第三方图书馆代码在 Django 和 WTForms 等包中,在某些类的构建者和其他地方读到这个属性。
这些声明的存在改变了具有这些声明的类别的行为. 例如,WTForms 阅读 self.Meta.csrf 以确定表格是否需要一个 csrf 字段。
其他回答
简而言之:一类是创建一个例子的图标,一类是创建一个类的图标,可以很容易地看到,在Python类中,也需要第一类对象才能实现这种行为。
我从来没有自己写过一个,但我认为在Django框架中可以看到最可爱的用途之一。模型类使用一个模型类的方法,以允许写新的模型或形式类的宣言风格。
剩下的就是:如果你不知道什么是金属玻璃,那么你不需要它们的可能性是99%。
看这:
Python 3.10.0rc2 (tags/v3.10.0rc2:839d789, Sep 7 2021, 18:51:45) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> class Object:
... pass
...
>>> class Meta(type):
... test = 'Worked!!!'
... def __repr__(self):
... return 'This is "Meta" metaclass'
...
>>> class ObjectWithMetaClass(metaclass=Meta):
... pass
...
>>> Object or type(Object())
<class '__main__.Object'>
>>> ObjectWithMetaClass or type(ObjectWithMetaClass())
This is "Meta" metaclass
>>> Object.test
AttributeError: ...
>>> ObjectWithMetaClass.test
'Worked!!!'
>>> type(Object)
<class 'type'>
>>> type(ObjectWithMetaClass)
<class '__main__.Meta'>
>>> type(type(ObjectWithMetaClass))
<class 'type'>
>>> Object.__bases__
(<class 'object'>,)
>>> ObjectWithMetaClass.__bases__
(<class 'object'>,)
>>> type(ObjectWithMetaClass).__bases__
(<class 'type'>,)
>>> Object.__mro__
(<class '__main__.Object'>, <class 'object'>)
>>> ObjectWithMetaClass.__mro__
(This is "Meta" metaclass, <class 'object'>)
>>>
换句话说,当一个对象没有创建(对象类型),我们正在寻找MetaClass。
Metaclasses 是做“类”的工作的秘密酱油,新风格对象的默认 metaclass 被称为“类型”。
class type(object)
| type(object) -> the object's type
| type(name, bases, dict) -> a new type
Metaclasses 取 3 args. 'name', 'bases' 和 'dict'
查找这个例子类定义中的名称、基础和字符号来源于哪里。
class ThisIsTheName(Bases, Are, Here):
All_the_code_here
def doesIs(create, a):
dict
def test_metaclass(name, bases, dict):
print 'The Class Name is', name
print 'The Class Bases are', bases
print 'The dict has', len(dict), 'elems, the keys are', dict.keys()
return "yellow"
class TestName(object, None, int, 1):
__metaclass__ = test_metaclass
foo = 1
def baz(self, arr):
pass
print 'TestName = ', repr(TestName)
# output =>
The Class Name is TestName
The Class Bases are (<type 'object'>, None, <type 'int'>, 1)
The dict has 4 elems, the keys are ['baz', '__module__', 'foo', '__metaclass__']
TestName = 'yellow'
现在,一个实际上意味着什么的例子,这将自动使列表中的变量“属性”设置在课堂上,并设置为无。
def init_attributes(name, bases, dict):
if 'attributes' in dict:
for attr in dict['attributes']:
dict[attr] = None
return type(name, bases, dict)
class Initialised(object):
__metaclass__ = init_attributes
attributes = ['foo', 'bar', 'baz']
print 'foo =>', Initialised.foo
# output=>
foo => None
请注意,启动者获得的魔法行为是通过拥有金属类的 init_属性而没有转移到启动者的子类。
这里是一个更具体的例子,显示如何可以创建一个在创建一个类时执行一个行动的甲型类的“类型”。
class MetaSingleton(type):
instance = None
def __call__(cls, *args, **kw):
if cls.instance is None:
cls.instance = super(MetaSingleton, cls).__call__(*args, **kw)
return cls.instance
class Foo(object):
__metaclass__ = MetaSingleton
a = Foo()
b = Foo()
assert a is b
我看到一个有趣的使用案例在一个名为类用途的包中,它检查是否所有类变量在顶部案例格式(方便有统一逻辑的配置类),并检查是否没有例子级方法在课堂上。
>>> class ObjectCreator(object):
... pass
>>> my_object = ObjectCreator()
>>> print(my_object)
<__main__.ObjectCreator object at 0x8974f2c>
>>> class ObjectCreator(object):
... pass
>>> print(JustAnotherVariable)
<class '__main__.ObjectCreator'>
>>> print(JustAnotherVariable())
<__main__.ObjectCreator object at 0x8997b4c>
>>> def choose_class(name):
... if name == 'foo':
... class Foo(object):
... pass
... return Foo # return the class, not an instance
... else:
... class Bar(object):
... pass
... return Bar
...
>>> MyClass = choose_class('foo')
>>> print(MyClass) # the function returns a class, not an instance
<class '__main__.Foo'>
>>> print(MyClass()) # you can create an object from this class
<__main__.Foo object at 0x89c6d4c>
>>> print(type(1))
<type 'int'>
>>> print(type("1"))
<type 'str'>
>>> print(type(ObjectCreator))
<type 'type'>
>>> print(type(ObjectCreator()))
<class '__main__.ObjectCreator'>
type(name, bases, attrs)
>>> class MyShinyClass(object):
... pass
>>> MyShinyClass = type('MyShinyClass', (), {}) # returns a class object
>>> print(MyShinyClass)
<class '__main__.MyShinyClass'>
>>> print(MyShinyClass()) # create an instance with the class
<__main__.MyShinyClass object at 0x8997cec>
>>> class Foo(object):
... bar = True
>>> Foo = type('Foo', (), {'bar':True})
>>> print(Foo)
<class '__main__.Foo'>
>>> print(Foo.bar)
True
>>> f = Foo()
>>> print(f)
<__main__.Foo object at 0x8a9b84c>
>>> print(f.bar)
True
>>> class FooChild(Foo):
... pass
>>> FooChild = type('FooChild', (Foo,), {})
>>> print(FooChild)
<class '__main__.FooChild'>
>>> print(FooChild.bar) # bar is inherited from Foo
True
>>> def echo_bar(self):
... print(self.bar)
...
>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True
>>> def echo_bar_more(self):
... print('yet another method')
...
>>> FooChild.echo_bar_more = echo_bar_more
>>> hasattr(FooChild, 'echo_bar_more')
True
MyClass = MetaClass()
my_object = MyClass()
MyClass = type('MyClass', (), {})
>>> age = 35
>>> age.__class__
<type 'int'>
>>> name = 'bob'
>>> name.__class__
<type 'str'>
>>> def foo(): pass
>>> foo.__class__
<type 'function'>
>>> class Bar(object): pass
>>> b = Bar()
>>> b.__class__
<class '__main__.Bar'>
>>> age.__class__.__class__
<type 'type'>
>>> name.__class__.__class__
<type 'type'>
>>> foo.__class__.__class__
<type 'type'>
>>> b.__class__.__class__
<type 'type'>
class Foo(object):
__metaclass__ = something...
[...]
class Foo(Bar):
pass
设置 meta 类的合成已在 Python 3 中更改:
class Foo(object, metaclass=something):
...
class Foo(object, metaclass=something, kwarg1=value1, kwarg2=value2):
...
# the metaclass will automatically get passed the same argument
# that you usually pass to `type`
def upper_attr(future_class_name, future_class_parents, future_class_attrs):
"""
Return a class object, with the list of its attribute turned
into uppercase.
"""
# pick up any attribute that doesn't start with '__' and uppercase it
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in future_class_attrs.items()
}
# let `type` do the class creation
return type(future_class_name, future_class_parents, uppercase_attrs)
__metaclass__ = upper_attr # this will affect all classes in the module
class Foo(): # global __metaclass__ won't work with "object" though
# but we can define __metaclass__ here instead to affect only this class
# and this will work with "object" children
bar = 'bip'
>>> hasattr(Foo, 'bar')
False
>>> hasattr(Foo, 'BAR')
True
>>> Foo.BAR
'bip'
# remember that `type` is actually a class like `str` and `int`
# so you can inherit from it
class UpperAttrMetaclass(type):
# __new__ is the method called before __init__
# it's the method that creates the object and returns it
# while __init__ just initializes the object passed as parameter
# you rarely use __new__, except when you want to control how the object
# is created.
# here the created object is the class, and we want to customize it
# so we override __new__
# you can do some stuff in __init__ too if you wish
# some advanced use involves overriding __call__ as well, but we won't
# see this
def __new__(upperattr_metaclass, future_class_name,
future_class_parents, future_class_attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in future_class_attrs.items()
}
return type(future_class_name, future_class_parents, uppercase_attrs)
class UpperAttrMetaclass(type):
def __new__(cls, clsname, bases, attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in attrs.items()
}
return type(clsname, bases, uppercase_attrs)
class UpperAttrMetaclass(type):
def __new__(cls, clsname, bases, attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in attrs.items()
}
return type.__new__(cls, clsname, bases, uppercase_attrs)
class UpperAttrMetaclass(type):
def __new__(cls, clsname, bases, attrs):
uppercase_attrs = {
attr if attr.startswith("__") else attr.upper(): v
for attr, v in attrs.items()
}
# Python 2 requires passing arguments to super:
return super(UpperAttrMetaclass, cls).__new__(
cls, clsname, bases, uppercase_attrs)
# Python 3 can use no-arg super() which infers them:
return super().__new__(cls, clsname, bases, uppercase_attrs)
class Foo(object, metaclass=MyMetaclass, kwarg1=value1):
...
class MyMetaclass(type):
def __new__(cls, clsname, bases, dct, kwargs1=default):
...
使用金属玻璃代码的复杂性背后的原因不是由于金属玻璃,而是因为你通常使用金属玻璃来制作依赖于入观、操纵遗产、如 __dict__ 等的旋转物品。
有几个理由这样做:
為什麼要使用MetaClass?
现在,大问题:为什么你会使用一些模糊的错误漏洞功能?
如果你想知道你是否需要它们,你不会(真正需要它们的人肯定知道他们需要它们,不需要解释为什么)。
Python Guru 蒂姆·彼得斯
class Person(models.Model):
name = models.CharField(max_length=30)
age = models.IntegerField()
person = Person(name='bob', age='35')
print(person.age)
最后一句话
首先,你知道,类是可以创造例子的物体。
>>> class Foo(object): pass
>>> id(Foo)
142630324
99%的时间你需要课堂变化,你更好地使用这些。
但98%的时间,你根本不需要课堂变化。
推荐文章
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- PHP中接口的意义是什么?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 虚拟方法和抽象方法的区别
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?