什么是甲状腺?它们用于什么?


当前回答

上面的答案是正确的。

但读者可能来到这里寻找关于类似名称的内部课程的答案,他们在受欢迎的图书馆,如Django和WTForms。

相反,这些是班级的命令之内的名称空间,它们是用内部班级为可读性而建造的。

在这个特殊的例子领域,抽象是显而易见地与作者模型的领域分开。

from django.db import models

class Author(models.Model):
    name = models.CharField(max_length=50)
    email = models.EmailField()

    class Meta:
        abstract = True

另一个例子是WTForms的文档:

from wtforms.form import Form
from wtforms.csrf.session import SessionCSRF
from wtforms.fields import StringField

class MyBaseForm(Form):
    class Meta:
        csrf = True
        csrf_class = SessionCSRF

    name = StringField("name")

这个合成不会在Python编程语言中得到特别的处理. Meta 不是这里的一个关键词,也不会引发 meta 类行为. 相反,第三方图书馆代码在 Django 和 WTForms 等包中,在某些类的构建者和其他地方读到这个属性。

这些声明的存在改变了具有这些声明的类别的行为. 例如,WTForms 阅读 self.Meta.csrf 以确定表格是否需要一个 csrf 字段。

其他回答

>>> class ObjectCreator(object):
...       pass

>>> my_object = ObjectCreator()
>>> print(my_object)
<__main__.ObjectCreator object at 0x8974f2c>

>>> class ObjectCreator(object):
...       pass

>>> print(JustAnotherVariable)
<class '__main__.ObjectCreator'>

>>> print(JustAnotherVariable())
<__main__.ObjectCreator object at 0x8997b4c>

>>> def choose_class(name):
...     if name == 'foo':
...         class Foo(object):
...             pass
...         return Foo # return the class, not an instance
...     else:
...         class Bar(object):
...             pass
...         return Bar
...
>>> MyClass = choose_class('foo')
>>> print(MyClass) # the function returns a class, not an instance
<class '__main__.Foo'>
>>> print(MyClass()) # you can create an object from this class
<__main__.Foo object at 0x89c6d4c>

>>> print(type(1))
<type 'int'>
>>> print(type("1"))
<type 'str'>
>>> print(type(ObjectCreator))
<type 'type'>
>>> print(type(ObjectCreator()))
<class '__main__.ObjectCreator'>

type(name, bases, attrs)

>>> class MyShinyClass(object):
...       pass

>>> MyShinyClass = type('MyShinyClass', (), {}) # returns a class object
>>> print(MyShinyClass)
<class '__main__.MyShinyClass'>
>>> print(MyShinyClass()) # create an instance with the class
<__main__.MyShinyClass object at 0x8997cec>

>>> class Foo(object):
...       bar = True

>>> Foo = type('Foo', (), {'bar':True})

>>> print(Foo)
<class '__main__.Foo'>
>>> print(Foo.bar)
True
>>> f = Foo()
>>> print(f)
<__main__.Foo object at 0x8a9b84c>
>>> print(f.bar)
True

>>>   class FooChild(Foo):
...         pass

>>> FooChild = type('FooChild', (Foo,), {})
>>> print(FooChild)
<class '__main__.FooChild'>
>>> print(FooChild.bar) # bar is inherited from Foo
True

>>> def echo_bar(self):
...       print(self.bar)
...
>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True

>>> def echo_bar_more(self):
...       print('yet another method')
...
>>> FooChild.echo_bar_more = echo_bar_more
>>> hasattr(FooChild, 'echo_bar_more')
True

MyClass = MetaClass()
my_object = MyClass()

MyClass = type('MyClass', (), {})

>>> age = 35
>>> age.__class__
<type 'int'>
>>> name = 'bob'
>>> name.__class__
<type 'str'>
>>> def foo(): pass
>>> foo.__class__
<type 'function'>
>>> class Bar(object): pass
>>> b = Bar()
>>> b.__class__
<class '__main__.Bar'>

>>> age.__class__.__class__
<type 'type'>
>>> name.__class__.__class__
<type 'type'>
>>> foo.__class__.__class__
<type 'type'>
>>> b.__class__.__class__
<type 'type'>

class Foo(object):
    __metaclass__ = something...
    [...]

class Foo(Bar):
    pass

设置 meta 类的合成已在 Python 3 中更改:

class Foo(object, metaclass=something):
    ...

class Foo(object, metaclass=something, kwarg1=value1, kwarg2=value2):
    ...

# the metaclass will automatically get passed the same argument
# that you usually pass to `type`
def upper_attr(future_class_name, future_class_parents, future_class_attrs):
    """
      Return a class object, with the list of its attribute turned
      into uppercase.
    """
    # pick up any attribute that doesn't start with '__' and uppercase it
    uppercase_attrs = {
        attr if attr.startswith("__") else attr.upper(): v
        for attr, v in future_class_attrs.items()
    }

    # let `type` do the class creation
    return type(future_class_name, future_class_parents, uppercase_attrs)

__metaclass__ = upper_attr # this will affect all classes in the module

class Foo(): # global __metaclass__ won't work with "object" though
    # but we can define __metaclass__ here instead to affect only this class
    # and this will work with "object" children
    bar = 'bip'

>>> hasattr(Foo, 'bar')
False
>>> hasattr(Foo, 'BAR')
True
>>> Foo.BAR
'bip'

# remember that `type` is actually a class like `str` and `int`
# so you can inherit from it
class UpperAttrMetaclass(type):
    # __new__ is the method called before __init__
    # it's the method that creates the object and returns it
    # while __init__ just initializes the object passed as parameter
    # you rarely use __new__, except when you want to control how the object
    # is created.
    # here the created object is the class, and we want to customize it
    # so we override __new__
    # you can do some stuff in __init__ too if you wish
    # some advanced use involves overriding __call__ as well, but we won't
    # see this
    def __new__(upperattr_metaclass, future_class_name,
                future_class_parents, future_class_attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in future_class_attrs.items()
        }
        return type(future_class_name, future_class_parents, uppercase_attrs)

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }
        return type(clsname, bases, uppercase_attrs)

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }
        return type.__new__(cls, clsname, bases, uppercase_attrs)

class UpperAttrMetaclass(type):
    def __new__(cls, clsname, bases, attrs):
        uppercase_attrs = {
            attr if attr.startswith("__") else attr.upper(): v
            for attr, v in attrs.items()
        }

        # Python 2 requires passing arguments to super:
        return super(UpperAttrMetaclass, cls).__new__(
            cls, clsname, bases, uppercase_attrs)

        # Python 3 can use no-arg super() which infers them:
        return super().__new__(cls, clsname, bases, uppercase_attrs)

class Foo(object, metaclass=MyMetaclass, kwarg1=value1):
    ...

class MyMetaclass(type):
    def __new__(cls, clsname, bases, dct, kwargs1=default):
        ...

使用金属玻璃代码的复杂性背后的原因不是由于金属玻璃,而是因为你通常使用金属玻璃来制作依赖于入观、操纵遗产、如 __dict__ 等的旋转物品。

有几个理由这样做:

為什麼要使用MetaClass?

现在,大问题:为什么你会使用一些模糊的错误漏洞功能?

如果你想知道你是否需要它们,你不会(真正需要它们的人肯定知道他们需要它们,不需要解释为什么)。

Python Guru 蒂姆·彼得斯

class Person(models.Model):
    name = models.CharField(max_length=30)
    age = models.IntegerField()

person = Person(name='bob', age='35')
print(person.age)

最后一句话

首先,你知道,类是可以创造例子的物体。

>>> class Foo(object): pass
>>> id(Foo)
142630324

99%的时间你需要课堂变化,你更好地使用这些。

但98%的时间,你根本不需要课堂变化。

Python 类本身是它们的 meta 类的对象 - 例如。

默认的金属类,当您确定类时应用于:

class foo:
    ...

例如,假设您正在构建一个ORM访问数据库,并且您希望每个表中的记录来自一个类地图到该表(基于字段,业务规则等),一个可能的使用MetaClass是例如,连接池逻辑,由所有表中的记录的所有类共享。

当你定义甲型时,你可以分类类型,并且可以超越下列魔法方法来插入你的逻辑。

class somemeta(type):
    __new__(mcs, name, bases, clsdict):
      """
  mcs: is the base metaclass, in this case type.
  name: name of the new class, as provided by the user.
  bases: tuple of base classes 
  clsdict: a dictionary containing all methods and attributes defined on class

  you must return a class object by invoking the __new__ constructor on the base metaclass. 
 ie: 
    return type.__call__(mcs, name, bases, clsdict).

  in the following case:

  class foo(baseclass):
        __metaclass__ = somemeta

  an_attr = 12

  def bar(self):
      ...

  @classmethod
  def foo(cls):
      ...

      arguments would be : ( somemeta, "foo", (baseclass, baseofbase,..., object), {"an_attr":12, "bar": <function>, "foo": <bound class method>}

      you can modify any of these values before passing on to type
      """
      return type.__call__(mcs, name, bases, clsdict)


    def __init__(self, name, bases, clsdict):
      """ 
      called after type has been created. unlike in standard classes, __init__ method cannot modify the instance (cls) - and should be used for class validaton.
      """
      pass


    def __prepare__():
        """
        returns a dict or something that can be used as a namespace.
        the type will then attach methods and attributes from class definition to it.

        call order :

        somemeta.__new__ ->  type.__new__ -> type.__init__ -> somemeta.__init__ 
        """
        return dict()

    def mymethod(cls):
        """ works like a classmethod, but for class objects. Also, my method will not be visible to instances of cls.
        """
        pass

无论如何,这两种是最常用的<unk>子,甲板是强大的,上面没有附近和完整的用途列表用于甲板。

类,在Python,是一个对象,和任何其他对象一样,它是一个例子“什么”。这个“什么”是所谓的MetaClass。这个MetaClass是一个特殊类型的类,创造了其他类的对象。因此,MetaClass负责创造新的类。

Class Name Tuple 具有由 Class A 继承的基类 词典具有所有类方法和类变量

另一种方式创建一个金属类是“金属类”的关键词,将金属类定义为一个简单的类,在继承类的参数中,通过金属类=金属类_名称。

Metaclass 可以在以下情况下具体使用:

除了发布的答案,我可以说,一个甲状腺可以定义一个类的行为,所以,你可以明确设置你的甲状腺,每当Python获得一个关键词类,然后它开始搜索甲状腺,如果它没有找到 - 默认甲状腺类型用于创建一个类的对象,使用 __metaclass__属性,你可以设置你的甲状腺类:

class MyClass:
   __metaclass__ = type
   # write here other method
   # write here one more method

print(MyClass.__metaclass__)

它将产生这样的产量:

class 'type'

当然,你可以创建自己的金属类来定义使用你的类创建的任何类的行为。

要做到这一点,您的默认金属类型类必须继承,因为这是主要金属类:

class MyMetaClass(type):
   __metaclass__ = type
   # you can write here any behaviour you want

class MyTestClass:
   __metaclass__ = MyMetaClass

Obj = MyTestClass()
print(Obj.__metaclass__)
print(MyMetaClass.__metaclass__)

产量将是:

class '__main__.MyMetaClass'
class 'type'

其他人已经解释了金属玻璃是如何工作的,它们是如何适应Python类型系统的,这里有一个例子,它们可以用于什么。在我写的测试框架中,我想跟踪在哪个类被定义的顺序,以便我后来能够在这个顺序中安装它们,我发现使用金属玻璃最容易做到这一点。

class MyMeta(type):

    counter = 0

    def __init__(cls, name, bases, dic):
        type.__init__(cls, name, bases, dic)
        cls._order = MyMeta.counter
        MyMeta.counter += 1

class MyType(object):              # Python 2
    __metaclass__ = MyMeta

class MyType(metaclass=MyMeta):    # Python 3
    pass

任何是 MyType 的子类,然后获得一个类属性 _ 命令,记录了类被定义的顺序。