记忆和动态规划的区别是什么?我认为动态规划是记忆的一个子集。对吗?
当前回答
记忆和动态规划都只解决单个子问题一次。
记忆化使用递归并自顶向下工作,而动态规划则相反,自底向上解决问题。
下面是一个有趣的类比
自上而下-首先你说我将接管世界。你会怎么做呢?你说我会先拿下亚洲。你会怎么做呢?我会先接管印度。我会成为德里的首席部长,等等。
自下而上——你说我会成为德里的首席部长。然后我会接管印度,然后是亚洲所有其他国家,最后我会接管全世界。
其他回答
(1)从概念上讲,记忆和DP其实是一回事。因为:考虑DP的定义:“重叠子问题”和“最优子结构”。记忆完全具备这两点。
(2)在递归较深的情况下,记忆是DP方法,存在栈溢出风险。DP自下而上没有这种风险。
(3)记忆需要一个哈希表。额外的空间和查找时间。
为了回答这个问题:
-从概念上讲,(1)意味着它们是一样的东西。
-考虑(2),如果你真的想,记忆化是DP的一个子集,从某种意义上说,可以通过记忆化解决的问题可以通过DP解决,但是可以通过DP解决的问题可能无法通过记忆化解决(因为它可能会堆栈溢出)。
把(3)考虑在内,它们在性能上有微小的差异。
动态规划通常被称为记忆!
Memoization is the top-down technique(start solving the given problem by breaking it down) and dynamic programming is a bottom-up technique(start solving from the trivial sub-problem, up towards the given problem) DP finds the solution by starting from the base case(s) and works its way upwards. DP solves all the sub-problems, because it does it bottom-up Unlike Memoization, which solves only the needed sub-problems DP has the potential to transform exponential-time brute-force solutions into polynomial-time algorithms. DP may be much more efficient because its iterative On the contrary, Memoization must pay for the (often significant) overhead due to recursion.
简单来说, 记忆法使用自顶向下的方法来解决问题,即从核心(主要)问题开始,然后将其分解为子问题,并以类似的方式解决这些子问题。在这种方法中,同一子问题可能会多次出现,消耗更多的CPU周期,从而增加时间复杂度。而在动态规划中,同一子问题不会求解多次,而是利用其先验结果来优化解。
想想两种方法,
我们把大问题分解成小问题——自顶向下的方法。 我们从最小的子问题开始,到达更大的问题——自下而上的方法。
在Memoization中,我们使用(1.),我们将每个函数调用保存在缓存中,并从那里进行回调。它有点昂贵,因为它涉及到递归调用。
在动态规划中,我们使用(2.)来维护一个表,通过使用保存在表中的数据(通常称为dp-table)自底向上解决子问题。
注意:
两者都适用于具有重叠子问题的问题。 由于递归函数调用期间涉及的开销,内存相对于DP执行得较差。 渐近时间复杂度保持不变。
在动态规划中,
没有递归的开销,维护表的开销也更少。 表访问的规则模式可用于减少时间或空间需求。
在记忆中,
有些子问题不需要解决。
这是一个记忆和DP从斐波那契数问题写在Java的例子。
这里的动态编程不涉及递归,因为它不受执行堆栈的限制,所以结果更快,可以计算出更高的值。
public class Solution {
public static long fibonacciMemoization(int i) {
return fibonacciMemoization(i, new long[i + 1]);
}
public static long fibonacciMemoization(int i, long[] memo) {
if (i <= 1) {
return 1;
}
if (memo[i] != 0) {
return memo[i];
}
long val = fibonacciMemoization(i - 1, memo) + fibonacciMemoization(i - 2, memo);
memo[i] = val;
return val;
}
public static long fibonacciDynamicPrograming(int i) {
if (i <= 1) {
return i;
}
long[] memo = new long[i + 1];
memo[0] = 1;
memo[1] = 1;
memo[2] = 2;
for (int j = 3; j <= i; j++) {
memo[j] = memo[j - 1] + memo[j - 2];
}
return memo[i];
}
public static void main(String[] args) {
System.out.println("Fibonacci with Dynamic Programing");
System.out.println(fibonacciDynamicPrograming(10));
System.out.println(fibonacciDynamicPrograming(1_000_000));
System.out.println("Fibonacci with Memoization");
System.out.println(fibonacciMemoization(10));
System.out.println(fibonacciMemoization(1_000_000)); //stackoverflow exception
}
}