记忆和动态规划的区别是什么?我认为动态规划是记忆的一个子集。对吗?
当前回答
动态规划是一种求解给定问题的算法范式 将复杂问题分解为子问题并存储结果 以避免再次计算相同的结果。
http://www.geeksforgeeks.org/dynamic-programming-set-1/
记忆是一种跟踪以前解决的解决方案的简单方法(通常实现为哈希键值对,而不是通常基于数组的制表),这样当它们再次遇到时就不会重新计算。它可以在自底向上或自顶向下的方法中使用。
请参阅关于记忆和制表的讨论。
动态规划是一种通过求解递归关系/递归并通过制表或记忆存储先前找到的解来解决某些类型问题的方法。记忆是一种跟踪以前解决问题的解决方案的方法,可以与任何对于给定输入集具有唯一确定性解决方案的函数一起使用。
其他回答
从维基百科:
记忆有关
在计算中,记忆是一种主要使用的优化技术 通过函数调用来加速计算机程序,避免重复 对先前处理过的输入的结果的计算。
动态规划
在数学和计算机科学中,动态规划是一种方法 把复杂的问题分解成更简单的问题 子问题。
当把一个问题分解成更小/更简单的子问题时,我们经常会不止一次遇到相同的子问题——所以我们使用Memoization来保存以前的计算结果,这样我们就不需要重复它们了。
动态编程经常遇到使用内存是有意义的情况,但您可以使用任何一种技术而不必使用另一种技术。
我想举个例子;
问题:
你正在爬楼梯。到达顶端需要n步。 每次你可以爬1或2级台阶。有多少不同的方式 你能爬到山顶吗?
带记忆的递归
通过这种方式,我们在memo数组的帮助下修剪(从树或灌木中去除多余的材料)递归树,并将递归树的大小减小到nn。
public class Solution {
public int climbStairs(int n) {
int memo[] = new int[n + 1];
return climb_Stairs(0, n, memo);
}
public int climb_Stairs(int i, int n, int memo[]) {
if (i > n) {
return 0;
}
if (i == n) {
return 1;
}
if (memo[i] > 0) {
return memo[i];
}
memo[i] = climb_Stairs(i + 1, n, memo) + climb_Stairs(i + 2, n, memo);
return memo[i];
}
}
动态规划
该问题可以分解为多个子问题,并且具有最优子结构的性质,即它的最优解可以由子问题的最优解有效地构造出来,因此可以采用动态规划的方法来求解该问题。
public class Solution {
public int climbStairs(int n) {
if (n == 1) {
return 1;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
示例摘自https://leetcode.com/problems/climbing-stairs/
想想两种方法,
我们把大问题分解成小问题——自顶向下的方法。 我们从最小的子问题开始,到达更大的问题——自下而上的方法。
在Memoization中,我们使用(1.),我们将每个函数调用保存在缓存中,并从那里进行回调。它有点昂贵,因为它涉及到递归调用。
在动态规划中,我们使用(2.)来维护一个表,通过使用保存在表中的数据(通常称为dp-table)自底向上解决子问题。
注意:
两者都适用于具有重叠子问题的问题。 由于递归函数调用期间涉及的开销,内存相对于DP执行得较差。 渐近时间复杂度保持不变。
动态规划(DP)和记忆化之间有一些相似之处,在大多数情况下,您可以通过记忆实现动态规划过程,反之亦然。但它们确实有一些区别,你应该在决定使用哪种方法时查看它们:
Memoization is a top-down approach during which you decompose a big problem into smaller-size subproblems with the same properties and when the size is small enough you can easily solve it by bruteforcing. Dynamic Programming is a bottom-up approach during which you firstly calculate the answer of small cases and then use them to construct the answer of big cases. During coding, usually memoization is implemented by recursion while dynamic programming does calculation by iteration. So if you have carefully calculate the space and time complexity of your algorithm, using dynamic-programming-style implementation can offer you better performance. There do exist situations where using memoization has advantages. Dynamic programming needs to calculate every subproblem because it doesn't know which one will be useful in the future. But memoization only calculate the subproblems related to the original problem. Sometimes you may design a DP algorithm with theoretically tremendous amount of dp status. But by careful analyses you find that only an acceptable amount of them will be used. In this situation it's preferred to use memoization to avoid huge execution time.
(1)从概念上讲,记忆和DP其实是一回事。因为:考虑DP的定义:“重叠子问题”和“最优子结构”。记忆完全具备这两点。
(2)在递归较深的情况下,记忆是DP方法,存在栈溢出风险。DP自下而上没有这种风险。
(3)记忆需要一个哈希表。额外的空间和查找时间。
为了回答这个问题:
-从概念上讲,(1)意味着它们是一样的东西。
-考虑(2),如果你真的想,记忆化是DP的一个子集,从某种意义上说,可以通过记忆化解决的问题可以通过DP解决,但是可以通过DP解决的问题可能无法通过记忆化解决(因为它可能会堆栈溢出)。
把(3)考虑在内,它们在性能上有微小的差异。