在R中是否有衡量函数执行时间的标准化方法?

显然我可以用系统。时间,然后取它们的差异,但我想知道是否有一些标准化的方法或功能(不想发明轮子)。


我似乎记得我曾经用过如下的东西:

somesysfunction("myfunction(with,arguments)")
> Start time : 2001-01-01 00:00:00  # output of somesysfunction
> "Result" "of" "myfunction"        # output of myfunction
> End time : 2001-01-01 00:00:10    # output of somesysfunction
> Total Execution time : 10 seconds # output of somesysfunction

当前回答

度量执行时间的一个稍微好一点的方法是使用rbenchmark包。这个包(很容易)允许您指定复制测试的次数,以及相对基准测试应该是多少次。

另见stats.stackexchange上的相关问题

其他回答

正如Andrie所说,system.time()工作正常。对于短函数,我更喜欢在其中放入replication ():

system.time( replicate(10000, myfunction(with,arguments) ) )

如果你喜欢,你可以使用matlab风格的tic-toc函数。看另一个SO问题

秒表功能在R

microbenchmark是一个轻量级(约50kB)包,或多或少是R中对多个表达式和函数进行基准测试的标准方法:

microbenchmark(myfunction(with,arguments))

例如:

> microbenchmark::microbenchmark(log10(5), log(5)/log(10), times = 10000)
Unit: nanoseconds
           expr min lq    mean median uq   max neval cld
       log10(5)   0  0 25.5738      0  1 10265 10000   a
 log(5)/log(10)   0  0 28.1838      0  1 10265 10000

在这里,两个表达式都被计算了10000次,平均执行时间约为25-30纳秒。

还有proc.time()

你可以用和Sys一样的方法使用。Time但是它给你的结果和system。Time类似。

ptm <- proc.time()
#your function here
proc.time() - ptm

主要区别使用

system.time({ #your function here })

proc.time()方法仍然执行你的函数,而不是仅仅测量时间… 顺便说一下,我喜欢使用系统。时间{}在里面,所以你可以把一组东西…

虽然其他解决方案对于单个函数也很有用,但我推荐使用下面的代码段,因为它更通用、更有效:

Rprof(tf <- "log.log", memory.profiling = TRUE)
# the code you want to profile must be in between
Rprof (NULL) ; print(summaryRprof(tf))