向pandas DataFrame对象添加空列的最简单方法是什么?我碰到的最好的是
df['foo'] = df.apply(lambda _: '', axis=1)
有没有更合理的方法?
向pandas DataFrame对象添加空列的最简单方法是什么?我碰到的最好的是
df['foo'] = df.apply(lambda _: '', axis=1)
有没有更合理的方法?
当前回答
一个更简单的解决方案是:
df = df.reindex(columns = header_list)
其中“header_list”是你想要显示的标题列表。
列表中包含的任何标题,如果在数据帧中没有找到,将在下面添加空白单元格。
因此,如果
header_list = ['a','b','c', 'd']
然后将c和d添加为带空白单元格的列
其他回答
如果我理解正确,assignment应该填写:
>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> df
A B
0 1 2
1 2 3
2 3 4
>>> df["C"] = ""
>>> df["D"] = np.nan
>>> df
A B C D
0 1 2 NaN
1 2 3 NaN
2 3 4 NaN
如果你有一个列列表,你想要为空,你可以使用赋值,然后理解字典,然后字典解包。
>>> df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> nan_cols_name = ["C","D","whatever"]
>>> df.assign(**{col:np.nan for col in nan_cols_name})
A B C D whatever
0 1 2 NaN NaN NaN
1 2 3 NaN NaN NaN
2 3 4 NaN NaN NaN
如果希望不同列有不同的值,还可以在解包的字典中解包多个字典。
df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
nan_cols_name = ["C","D","whatever"]
empty_string_cols_name = ["E","F","bad column with space"]
df.assign(**{
**{col:np.nan for col in my_empy_columns_name},
**{col:"" for col in empty_string_cols_name}
}
)
如果您想从列表中添加列名
df=pd.DataFrame()
a=['col1','col2','col3','col4']
for i in a:
df[i]=np.nan
很抱歉我一开始没有解释清楚我的答案。还有另一种方法可以将新列添加到现有数据框架中。 第一步,创建一个新的空数据帧(包含数据帧中的所有列,加上您想添加的新列或少数列),称为df_temp 第二步,结合df_temp和你的数据帧。
df_temp = pd.DataFrame(columns=(df_null.columns.tolist() + ['empty']))
df = pd.concat([df_temp, df])
这可能是最好的解决方案,但这是思考这个问题的另一种方式。
我使用这种方法的原因是因为我总是得到这样的警告:
: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df["empty1"], df["empty2"] = [np.nan, ""]
太好了,我找到了禁用警告的方法
pd.options.mode.chained_assignment = None
我寻找这样一个解决方案的原因只是在多个df之间添加空格,这些df已经使用pd按列连接。Concat函数,然后使用xlsxwriter写入excel。
df[' ']=df.apply(lambda _: '', axis=1)
df_2 = pd.concat([df,df1],axis=1) #worked but only once.
# Note: df & df1 have the same rows which is my index.
#
df_2[' ']=df_2.apply(lambda _: '', axis=1) #didn't work this time !!?
df_4 = pd.concat([df_2,df_3],axis=1)
然后将第二个lambda调用替换为
df_2['']='' #which appears to add a blank column
df_4 = pd.concat([df_2,df_3],axis=1)
我测试的输出是使用xlsxwriter到excel。 Jupyter空白列看起来和excel一样,虽然没有xlsx格式。 不知道为什么第二个Lambda调用没有工作。