向pandas DataFrame对象添加空列的最简单方法是什么?我碰到的最好的是

df['foo'] = df.apply(lambda _: '', axis=1)

有没有更合理的方法?


当前回答

我喜欢:

df['new'] = pd.Series(dtype='int')

# or use other dtypes like 'float', 'object', ...

如果您有一个空的数据框架,这个解决方案确保没有只包含NaN的新行被添加。

指定dtype并不是必须的,但是如果没有指定dtype,更新的Pandas版本会产生DeprecationWarning。

其他回答

一个更简单的解决方案是:

df = df.reindex(columns = header_list)                

其中“header_list”是你想要显示的标题列表。

列表中包含的任何标题,如果在数据帧中没有找到,将在下面添加空白单元格。

因此,如果

header_list = ['a','b','c', 'd']

然后将c和d添加为带空白单元格的列

我喜欢:

df['new'] = pd.Series(dtype='int')

# or use other dtypes like 'float', 'object', ...

如果您有一个空的数据框架,这个解决方案确保没有只包含NaN的新行被添加。

指定dtype并不是必须的,但是如果没有指定dtype,更新的Pandas版本会产生DeprecationWarning。

从v0.16.0开始,可以使用DF.assign()将新列(单个/多个)分配给DF。这些列按字母顺序插入DF的末尾。

当你想直接对返回的数据帧执行一系列链式操作时,这比简单的赋值更有优势。

考虑@DSM演示的相同DF示例:

df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
df
Out[18]:
   A  B
0  1  2
1  2  3
2  3  4

df.assign(C="",D=np.nan)
Out[21]:
   A  B C   D
0  1  2   NaN
1  2  3   NaN
2  3  4   NaN

请注意,这将返回一个副本,其中包含所有以前的列以及新创建的列。为了对原始DF进行相应的修改,可以这样使用:DF = DF .assign(…),因为它目前不支持就地操作。

@emunsing的回答非常酷,可以添加多列,但我在python 2.7中无法让它为我工作。相反,我发现这个方法很有效:

mydf = mydf.reindex(columns = np.append( mydf.columns.values, ['newcol1','newcol2'])
df["C"] = ""
df["D"] = np.nan

赋值会给你这个警告SettingWithCopyWarning:

一个值正试图从数据帧(DataFrame)中设置一个片的副本。试一试 使用.loc[row_indexer,col_indexer] = value代替

所以最好使用insert:

df.insert(index, column-name, column-value)