向pandas DataFrame对象添加空列的最简单方法是什么?我碰到的最好的是

df['foo'] = df.apply(lambda _: '', axis=1)

有没有更合理的方法?


当前回答

如果你有一个列列表,你想要为空,你可以使用赋值,然后理解字典,然后字典解包。

>>> df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> nan_cols_name = ["C","D","whatever"]
>>> df.assign(**{col:np.nan for col in nan_cols_name})

   A  B   C   D  whatever
0  1  2 NaN NaN       NaN
1  2  3 NaN NaN       NaN
2  3  4 NaN NaN       NaN

如果希望不同列有不同的值,还可以在解包的字典中解包多个字典。

df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
nan_cols_name = ["C","D","whatever"]
empty_string_cols_name = ["E","F","bad column with space"]
df.assign(**{
    **{col:np.nan for col in my_empy_columns_name}, 
    **{col:"" for col in empty_string_cols_name}
            }
         )

其他回答

下面的代码解决了“如何向现有数据框架中添加n个空列”的问题。为了将类似问题的解决方案保存在一个地方,我在这里添加了它。

方法1(创建64个附加列,列名从1到64)

m = list(range(1,65,1)) 
dd=pd.DataFrame(columns=m)
df.join(dd).replace(np.nan,'') #df is the dataframe that already exists

方法2(创建64个附加列,列名从1到64)

df.reindex(df.columns.tolist() + list(range(1,65,1)), axis=1).replace(np.nan,'')

如果你有一个列列表,你想要为空,你可以使用赋值,然后理解字典,然后字典解包。

>>> df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> nan_cols_name = ["C","D","whatever"]
>>> df.assign(**{col:np.nan for col in nan_cols_name})

   A  B   C   D  whatever
0  1  2 NaN NaN       NaN
1  2  3 NaN NaN       NaN
2  3  4 NaN NaN       NaN

如果希望不同列有不同的值,还可以在解包的字典中解包多个字典。

df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
nan_cols_name = ["C","D","whatever"]
empty_string_cols_name = ["E","F","bad column with space"]
df.assign(**{
    **{col:np.nan for col in my_empy_columns_name}, 
    **{col:"" for col in empty_string_cols_name}
            }
         )

可以用df。插入(index_to_insert_at, column_header, init_value)在特定索引处插入新列。

cost_tbl.insert(1, "col_name", "") 

上面的语句将在第一列之后插入一个空列。

df["C"] = ""
df["D"] = np.nan

赋值会给你这个警告SettingWithCopyWarning:

一个值正试图从数据帧(DataFrame)中设置一个片的副本。试一试 使用.loc[row_indexer,col_indexer] = value代替

所以最好使用insert:

df.insert(index, column-name, column-value)

为了补充DSM的答案,并在这个相关问题的基础上,我将这种方法分为两种情况:

添加单列:只需为新列分配空值,例如df['C'] = np.nan 添加多个列:我建议使用pandas的.reindex(columns=[…])方法将新列添加到数据帧的列索引中。这也适用于使用.reindex(rows=[…])添加多个新行。注意,更新版本的Pandas (v>0.20)允许您指定axis关键字,而不是显式地分配给列或行。

下面是一个添加多列的例子:

mydf = mydf.reindex(columns = mydf.columns.tolist() + ['newcol1','newcol2'])

or

mydf = mydf.reindex(mydf.columns.tolist() + ['newcol1','newcol2'], axis=1)  # version > 0.20.0

你也可以总是连接一个新的(空的)数据框架到现有的数据框架,但这对我来说不像python式的:)