向pandas DataFrame对象添加空列的最简单方法是什么?我碰到的最好的是

df['foo'] = df.apply(lambda _: '', axis=1)

有没有更合理的方法?


当前回答

可以用df。插入(index_to_insert_at, column_header, init_value)在特定索引处插入新列。

cost_tbl.insert(1, "col_name", "") 

上面的语句将在第一列之后插入一个空列。

其他回答

如果我理解正确,assignment应该填写:

>>> import numpy as np
>>> import pandas as pd
>>> df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> df
   A  B
0  1  2
1  2  3
2  3  4
>>> df["C"] = ""
>>> df["D"] = np.nan
>>> df
   A  B C   D
0  1  2   NaN
1  2  3   NaN
2  3  4   NaN

我喜欢:

df['new'] = pd.Series(dtype='int')

# or use other dtypes like 'float', 'object', ...

如果您有一个空的数据框架,这个解决方案确保没有只包含NaN的新行被添加。

指定dtype并不是必须的,但是如果没有指定dtype,更新的Pandas版本会产生DeprecationWarning。

很抱歉我一开始没有解释清楚我的答案。还有另一种方法可以将新列添加到现有数据框架中。 第一步,创建一个新的空数据帧(包含数据帧中的所有列,加上您想添加的新列或少数列),称为df_temp 第二步,结合df_temp和你的数据帧。

df_temp = pd.DataFrame(columns=(df_null.columns.tolist() + ['empty']))
df = pd.concat([df_temp, df])

这可能是最好的解决方案,但这是思考这个问题的另一种方式。

我使用这种方法的原因是因为我总是得到这样的警告:

: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df["empty1"], df["empty2"] = [np.nan, ""]

太好了,我找到了禁用警告的方法

pd.options.mode.chained_assignment = None 

这也适用于多个列:

df = pd.DataFrame({"A": [1,2,3], "B": [2,3,4]})
>>> df
   A  B
0  1  2
1  2  3
2  3  4

df1 = pd.DataFrame(columns=['C','D','E'])
df = df.join(df1, how="outer")

>>>df
    A   B   C   D   E
0   1   2   NaN NaN NaN
1   2   3   NaN NaN NaN
2   3   4   NaN NaN NaN

然后对列做任何你想做的事情 pd.Series.map pd.Series.fillna (), () 等。

一个更简单的解决方案是:

df = df.reindex(columns = header_list)                

其中“header_list”是你想要显示的标题列表。

列表中包含的任何标题,如果在数据帧中没有找到,将在下面添加空白单元格。

因此,如果

header_list = ['a','b','c', 'd']

然后将c和d添加为带空白单元格的列