我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
当前回答
变量
TensorFlow变量是表示程序操纵的共享持久状态的最佳方式。变量是通过tf操作的。变量类。内部是一个tf。变量存储一个持久张量。特定的操作允许你读取和修改这个张量的值。这些修改在多个tf中可见。会话,因此多个工作人员可以看到tf.Variable的相同值。变量在使用前必须初始化。
例子:
x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
f = x*x*y + y + 2
这将创建一个计算图。变量(x和y)可以被初始化,函数(f)在一个tensorflow会话中被计算,如下所示:
with tf.Session() as sess:
x.initializer.run()
y.initializer.run()
result = f.eval()
print(result)
42
占位符
占位符是一个节点(与变量相同),其值可以在将来初始化。这些节点基本上在运行时输出分配给它们的值。占位符节点可以使用tf.placeholder()类来分配,你可以为它提供参数,比如变量的类型和/或它的形状。占位符广泛用于表示机器学习模型中的训练数据集,因为训练数据集不断变化。
例子:
A = tf.placeholder(tf.float32, shape=(None, 3))
B = A + 5
注意:维度的“None”表示“任何大小”。
with tf.Session as sess:
B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})
B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})
print(B_val_1)
[[6. 7. 8.]]
print(B_val_2)
[[9. 10. 11.]
[12. 13. 14.]]
引用:
https://www.tensorflow.org/guide/variables https://www.tensorflow.org/api_docs/python/tf/placeholder O'Reilly:使用Scikit-Learn和Tensorflow进行动手机器学习
其他回答
除了其他人的答案,他们在Tensoflow网站上的MNIST教程中也解释得很好:
We describe these interacting operations by manipulating symbolic variables. Let's create one: x = tf.placeholder(tf.float32, [None, 784]), x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensional vector. We represent this as a 2-D tensor of floating-point numbers, with a shape [None, 784]. (Here None means that a dimension can be of any length.) We also need the weights and biases for our model. We could imagine treating these like additional inputs, but TensorFlow has an even better way to handle it: Variable. A Variable is a modifiable tensor that lives in TensorFlow's graph of interacting operations. It can be used and even modified by the computation. For machine learning applications, one generally has the model parameters be Variables. W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) We create these Variables by giving tf.Variable the initial value of the Variable: in this case, we initialize both W and b as tensors full of zeros. Since we are going to learn W and b, it doesn't matter very much what they initially are.
简而言之,使用tf。变量为可训练变量,如权重(W)和偏差(B)为您的模型。
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
特遣部队。占位符用于提供实际的训练示例。
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
这是你在训练中输入训练示例的方式:
for step in xrange(FLAGS.max_steps):
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
你的助教。变量将被训练(修改)作为这个训练的结果。
详见https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html。(例子摘自网页。)
想象一个计算图。在这样的图中,我们需要一个输入节点来将数据传递到图中,这些节点应该在tensorflow中定义为占位符。
不要把Python想象成一个通用的程序。你可以写一个Python程序,做所有那些在其他答案中通过变量解释的事情,但对于张量流中的计算图,为了将数据输入到图中,你需要将这些点定义为占位符。
在TensorFlow中,变量只是另一个张量(比如tf。常量或tf.placeholder)。碰巧变量可以通过计算来修改。特遣部队。占位符用于将在运行时提供给计算的外部输入(例如训练数据)。特遣部队。变量用于作为计算的一部分并将被计算修改的输入(例如神经网络的权重)。
博士TL;
变量
为了学习参数 价值观可以从培训中获得 初始值是必需的(通常是随机的)
占位符
为数据分配存储(例如在馈送期间用于图像像素数据) 初始值不是必需的(但可以设置,参见tf.placeholder_with_default)