我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。

谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?


当前回答

Tensorflow使用三种类型的容器来存储/执行过程

Constants:Constants保存典型数据。 变量:数据值将被改变,相应的函数,如cost_function.. 占位符:训练/测试数据将被传递到图表中。

其他回答

对于TF V1:

常数是有初始值的,在计算中不会发生变化; 变量具有初值,在计算中可以变化;(对于参数来说很好) 占位符没有初始值,在计算中不会改变。(非常适合像预测实例这样的输入)

对于TF V2,同样,但他们试图隐藏占位符(图形模式不是首选)。

Tensorflow 2.0兼容答案:占位符的概念,tf。占位符在Tensorflow 2中不可用。x(>= 2.0),因为默认执行模式为“主动执行”。

但是,我们可以在图形模式下使用它们(禁用急切执行)。

版本2中TF占位符的等效命令。X是tf. compatat .v1.placeholder。

版本2中TF变量的等效命令。X等于tf。变量和如果您想从1迁移代码。X到2。X,等效命令为

tf.compat.v2.Variable。

有关Tensorflow 2.0版本的更多信息,请参阅此Tensorflow页面。

有关从版本1迁移的更多信息,请参阅迁移指南。X到2。X。

简而言之,使用tf。变量为可训练变量,如权重(W)和偏差(B)为您的模型。

weights = tf.Variable(
    tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                    stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')

biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')

特遣部队。占位符用于提供实际的训练示例。

images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))

这是你在训练中输入训练示例的方式:

for step in xrange(FLAGS.max_steps):
    feed_dict = {
       images_placeholder: images_feed,
       labels_placeholder: labels_feed,
     }
    _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)

你的助教。变量将被训练(修改)作为这个训练的结果。

详见https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html。(例子摘自网页。)

区别在于tf。变量,在声明时必须提供初始值。特遣部队。占位符,你不必提供初始值,你可以在运行时在Session.run中使用feed_dict参数指定它

示例代码片段:

import numpy as np
import tensorflow as tf

### Model parameters ###
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)

### Model input and output ###
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)

### loss ###
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares

### optimizer ###
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

### training data ###
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]

### training loop ###
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
  sess.run(train, {x:x_train, y:y_train})

顾名思义,占位符是稍后提供一个值的承诺。

变量只是训练参数(W(矩阵),b(偏差),与您在日常编程中使用的正常变量相同,培训师在每次运行/步骤中更新/修改。

虽然占位符不需要任何初始值,当你创建x和y时,TF不分配任何内存,相反,当你在sesss .run()中使用feed_dict提供占位符时,TensorFlow将为它们分配适当大小的内存(x和y) -这种不受约束的特性允许我们提供任何大小和形状的数据。


简而言之:

Variable -是一个你希望训练器(例如GradientDescentOptimizer)在每一步之后更新的参数。

占位符演示-

a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b  # + provides a shortcut for tf.add(a, b)

执行:

print(sess.run(adder_node, {a: 3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2, 4]}))

结果是输出

7.5
[ 3.  7.]

在第一种情况下,3和4.5将分别传递给a和b,然后传递给adder_node输出7。在第二种情况下,有一个提要列表,第一步1和2将被添加,接下来的3和4 (a和b)。


相关阅读:

特遣部队。占位符doc。 特遣部队。变量doc。 变量VS占位符。