在c#中,多维数组double[,]和数组的数组double[][]有什么区别?
如果有区别,每一种的最佳用途是什么?
在c#中,多维数组double[,]和数组的数组double[][]有什么区别?
如果有区别,每一种的最佳用途是什么?
当前回答
交错数组是数组的数组,或者每一行包含一个自己的数组的数组。
这些数组的长度可以不同于其他行的长度。
声明和分配数组的数组
与常规多维数组相比,锯齿数组声明的唯一不同之处在于,我们不只有一对括号。对于锯齿状数组,每个维度都有一对括号。我们这样分配它们:
int [] [] exampleJaggedArray; jaggedArray = new int[2][]; jaggedArray[0] = new int[5]; jaggedArray[1] = new int[3];
初始化数组的数组
int[][] exampleJaggedArray = { New int[] {5,7,2}, New int[] {10,20,40}, 新的int[] {3,25} };
内存分配
锯齿数组是引用的聚合。锯齿状数组不直接包含任何数组,而是有指向它们的元素。大小是未知的,这就是为什么CLR只保留对内部数组的引用。在我们为锯齿状数组的一个数组元素分配内存之后,引用开始指向动态内存中新创建的块。
变量exampleJaggedArray存储在程序的执行堆栈中,并指向动态内存中的一个块,该块包含对内存中其他三个块的三个引用序列;它们每个都包含一个整数数组——锯齿数组的元素:
其他回答
简单地说,多维数组类似于DBMS中的表。 Array of Array(锯齿状数组)允许每个元素保存另一个相同类型的可变长度数组。
因此,如果您确定数据结构看起来像一个表(固定的行/列),您可以使用多维数组。锯齿数组是固定的元素&每个元素可以容纳一个可变长度的数组
例如Psuedocode:
int[,] data = new int[2,2];
data[0,0] = 1;
data[0,1] = 2;
data[1,0] = 3;
data[1,1] = 4;
我们可以把上面的表格看成一个2x2的表格:
1 | 2 3 | 4
int[][] jagged = new int[3][];
jagged[0] = new int[4] { 1, 2, 3, 4 };
jagged[1] = new int[2] { 11, 12 };
jagged[2] = new int[3] { 21, 22, 23 };
可以把上面的代码看成每一行都有可变的列数:
1 | 2 | 3 | 4 11 | 12 21 | | 22, 23
多维数组是(n-1)维矩阵。
所以int[,] square = new int[2,2]是一个方阵2x2, int[,] cube = new int[3,3,3]是一个立方-方阵3x3。比例不是必需的。
交错数组只是数组的数组——每个单元格包含一个数组的数组。
所以MDA是成比例的,JD可能不是!每个单元格可以包含任意长度的数组!
使用基于John Leidegren的测试,我使用。net 4.7.2对结果进行了基准测试,这是与我的目的相关的版本,我认为我可以分享。我最初是从dotnet核心GitHub存储库中的这条注释开始的。
随着数组大小的变化,性能似乎有很大变化,至少在我的设置中是这样,1个处理器xeon, 4physical 8logical。
W =初始化一个数组,并将int I * j放入其中。 Wr = do w,然后在另一个循环中设置int x为[i,j]
随着数组大小的增长,多维似乎表现得更好。
Size | rw | Method | Mean | Error | StdDev | Gen 0/1k Op | Gen 1/1k Op | Gen 2/1k Op | Allocated Memory/Op |
---|---|---|---|---|---|---|---|---|---|
1800*500 | w | Jagged | 2.445 ms | 0.0959 ms | 0.1405 ms | 578.1250 | 281.2500 | 85.9375 | 3.46 MB |
1800*500 | w | Multi | 3.079 ms | 0.2419 ms | 0.3621 ms | 269.5313 | 269.5313 | 269.5313 | 3.43 MB |
2000*4000 | w | Jagged | 50.29 ms | 3.262 ms | 4.882 ms | 5937.5000 | 3375.0000 | 937.5000 | 30.62 MB |
2000*4000 | w | Multi | 26.34 ms | 1.797 ms | 2.690 ms | 218.7500 | 218.7500 | 218.7500 | 30.52 MB |
2000*4000 | wr | Jagged | 55.30 ms | 3.066 ms | 4.589 ms | 5937.5000 | 3375.0000 | 937.5000 | 30.62 MB |
2000*4000 | wr | Multi | 32.23 ms | 2.798 ms | 4.187 ms | 285.7143 | 285.7143 | 285.7143 | 30.52 MB |
1000*2000 | wr | Jagged | 11.18 ms | 0.5397 ms | 0.8078 ms | 1437.5000 | 578.1250 | 234.3750 | 7.69 MB |
1000*2000 | wr | Multi | 6.622 ms | 0.3238 ms | 0.4847 ms | 210.9375 | 210.9375 | 210.9375 | 7.63 MB |
更新:最后两个测试用双[,]代替int[,]。考虑到误差,这种差异显得很显著。对于int,锯齿与md的平均比率在1.53x和1.86x之间,对于双精度,它是1.88x和2.42x。
Size | rw | Method | Mean | Error | StdDev | Gen 0/1k Op | Gen 1/1k Op | Gen 2/1k Op | Allocated Memory/Op |
---|---|---|---|---|---|---|---|---|---|
1000*2000 | wr | Jagged | 26.83 ms | 1.221 ms | 1.790 ms | 3062.5000 | 1531.2500 | 531.2500 | 15.31 MB |
1000*2000 | wr | Multi | 12.61 ms | 1.018 ms | 1.524 ms | 156.2500 | 156.2500 | 156.2500 | 15.26 MB |
除了其他答案之外,请注意,多维数组被分配为堆上的一个大块对象。这有一些含义:
Some multidimensional arrays will get allocated on the Large Object Heap (LOH) where their equivalent jagged array counterparts would otherwise not have. The GC will need to find a single contiguous free block of memory to allocate a multidimensional array, whereas a jagged array might be able to fill in gaps caused by heap fragmentation... this isn't usually an issue in .NET because of compaction, but the LOH doesn't get compacted by default (you have to ask for it, and you have to ask every time you want it). You'll want to look into <gcAllowVeryLargeObjects> for multidimensional arrays way before the issue will ever come up if you only ever use jagged arrays.
更新。net 6:
随着. net 6的发布,我决定是时候重新讨论这个话题了。我重写了new . net的测试代码,并按照每个部分至少运行一秒钟的要求运行它。基准测试是在AMD Ryzen 5600x上完成的。
Results? It's complicated. It seems that Single array is the most performant for smaller and large arrays (< ~25x25x25 & > ~200x200x200) and Jagged arrays being fastest in between. Unfortunately it seems from my testing that multi-dimensional are by far the slowest option. At best performing twice as slow as the fastest option. But! It depends on what you need the arrays for because jagged arrays can take much longer to initialize on 50^3 cube the initialization was roughly 3 times longer than single dimensional. Multi-dimensional was only a little bit slower than single dimensional.
结论?如果您需要快速的代码,请自己在将要运行它的机器上进行基准测试。CPU架构可以完成各个方法的相对性能变化。
数字!
Method name Ticks/Iteration Scaled to the best
Array size 1x1x1 (10,000,000 iterations):
Jagged: 0.15 4.28
Single: 0.035 1
Multi-dimensional: 0.77 22
Array size 10x10x10 (25,000 iterations):
Jagged: 15 1.67
Single: 9 1
Multi-dimensional: 56 6.2
Array size 25x25x25 (25,000 iterations):
Jagged: 157 1.3
Single: 120 1
Multi-dimensional: 667 5.56
Array size 50x50x50 (10,000 iterations):
Jagged: 1,140 1
Single: 2,440 2.14
Multi-dimensional: 5,210 4.57
Array size 100x100x100 (10,000 iterations):
Jagged: 9,800 1
Single: 19,800 2
Multi-dimensional: 41,700 4.25
Array size 200x200x200 (1,000 iterations):
Jagged: 161,622 1
Single: 175,507 1.086
Multi-dimensional: 351,275 2.17
Array size 500x500x500 (100 iterations):
Jagged: 4,057.413 1.5
Single: 2,709,301 1
Multi-dimensional: 5,359,393 1.98
不相信我?自己运行并验证。
注意:常量大小似乎给锯齿状数组一个边缘,但并不足以改变我的基准测试中的顺序。我在一些实例中测量到,当使用用户输入的大小时,锯齿状数组的性能下降了7%,对于单个数组没有差异,对于多维数组的性能下降非常小(~1%或更少)。它在中间最为突出,锯齿状阵列占据主导地位。
using System.Diagnostics;
const string Format = "{0,7:0.000} ";
const int TotalPasses = 25000;
const int Size = 50;
Stopwatch timer = new();
var functionList = new List<Action> { Jagged, Single, SingleStandard, Multi };
Console.WriteLine("{0,5}{1,20}{2,20}{3,20}{4,20}", "Run", "Ticks", "ms", "Ticks/Instance", "ms/Instance");
foreach (var item in functionList)
{
var warmup = Test(item);
var run = Test(item);
Console.WriteLine($"{item.Method.Name}:");
PrintResult("warmup", warmup);
PrintResult("run", run);
Console.WriteLine();
}
static void PrintResult(string name, long ticks)
{
Console.WriteLine("{0,10}{1,20}{2,20}{3,20}{4,20}", name, ticks, string.Format(Format, (decimal)ticks / TimeSpan.TicksPerMillisecond), (decimal)ticks / TotalPasses, (decimal)ticks / TotalPasses / TimeSpan.TicksPerMillisecond);
}
long Test(Action func)
{
timer.Restart();
func();
timer.Stop();
return timer.ElapsedTicks;
}
static void Jagged()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var jagged = new int[Size][][];
for (var i = 0; i < Size; i++)
{
jagged[i] = new int[Size][];
for (var j = 0; j < Size; j++)
{
jagged[i][j] = new int[Size];
for (var k = 0; k < Size; k++)
{
jagged[i][j][k] = i * j * k;
}
}
}
}
}
static void Multi()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var multi = new int[Size, Size, Size];
for (var i = 0; i < Size; i++)
{
for (var j = 0; j < Size; j++)
{
for (var k = 0; k < Size; k++)
{
multi[i, j, k] = i * j * k;
}
}
}
}
}
static void Single()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var single = new int[Size * Size * Size];
for (var i = 0; i < Size; i++)
{
int iOffset = i * Size * Size;
for (var j = 0; j < Size; j++)
{
var jOffset = iOffset + j * Size;
for (var k = 0; k < Size; k++)
{
single[jOffset + k] = i * j * k;
}
}
}
}
}
static void SingleStandard()
{
for (var passes = 0; passes < TotalPasses; passes++)
{
var single = new int[Size * Size * Size];
for (var i = 0; i < Size; i++)
{
for (var j = 0; j < Size; j++)
{
for (var k = 0; k < Size; k++)
{
single[i * Size * Size + j * Size + k] = i * j * k;
}
}
}
}
}
经验教训:总是在基准测试中包含CPU,因为它会有所不同。这次是吗?我不知道,但我怀疑是。
最初的回答:
我想更新一下,因为在。net Core中多维数组比锯齿数组更快。我运行了John Leidegren的测试,这些是。net Core 2.0预览版2的结果。我增加了维度值,使任何来自后台应用程序的可能影响变得不那么明显。
Debug (code optimalization disabled)
Running jagged
187.232 200.585 219.927 227.765 225.334 222.745 224.036 222.396 219.912 222.737
Running multi-dimensional
130.732 151.398 131.763 129.740 129.572 159.948 145.464 131.930 133.117 129.342
Running single-dimensional
91.153 145.657 111.974 96.436 100.015 97.640 94.581 139.658 108.326 92.931
Release (code optimalization enabled)
Running jagged
108.503 95.409 128.187 121.877 119.295 118.201 102.321 116.393 125.499 116.459
Running multi-dimensional
62.292 60.627 60.611 60.883 61.167 60.923 62.083 60.932 61.444 62.974
Running single-dimensional
34.974 33.901 34.088 34.659 34.064 34.735 34.919 34.694 35.006 34.796
我调查了拆解,这是我的发现
[i][j][k] = i * j * k;需要执行34条指令
Multi [i, j, k] = i * j * k;需要执行11条指令
单个[i * dim * dim + j * dim + k] = i * j * k;需要执行23条指令
我无法确定为什么一维数组仍然比多维数组快,但我猜这与CPU上的一些优化有关