了解汇编程序的原因之一是,有时可以使用汇编程序来编写比用高级语言(特别是C语言)编写的代码性能更好的代码。然而,我也听人说过很多次,尽管这并非完全错误,但实际上可以使用汇编程序来生成性能更好的代码的情况极其罕见,并且需要汇编方面的专业知识和经验。

这个问题甚至没有涉及到这样一个事实,即汇编程序指令将是特定于机器的、不可移植的,或者汇编程序的任何其他方面。当然,除了这一点之外,了解汇编还有很多很好的理由,但这是一个需要示例和数据的具体问题,而不是关于汇编程序与高级语言的扩展论述。

谁能提供一些具体的例子,说明使用现代编译器汇编代码比编写良好的C代码更快,并且您能否用分析证据支持这一说法?我相信这些案例确实存在,但我真的很想知道这些案例到底有多深奥,因为这似乎是一个有争议的问题。


当前回答

Actually you can build large scale programs in a large model mode segaments may be restricted to 64kb code but you can write many segaments, people give the argument against ASM as it is an old language and we don't need to preserve memory anymore, If that were the case why would we be packing our PC's with memory, the only Flaw I can find with ASM is that it is more or less Processor based so most programs written for the intel architecture Most likely would not run on An AMD Architecture. As for C being faster than ASM there is no language faster than ASM and ASM can do many thing's C and other HLL's can not do at processor level. ASM is a difficult language to learn but once you learn it no HLL can translate it better than you. If you could only see some of the things HLL's Do to you code, and understand what it is doing, you would wonder why More people don't use ASM and why assembers are no longer being updated ( For general public use anyway). So no C is not faster than ASM. Even experiences C++ programmers still use and write code Chunks in ASM added to there C++ code for speed. Other Languages Also that some people think are obsolete or possibly no good is a myth at times for instance Photoshop is written in Pascal/ASM 1st release of souce has been submitted to the technical history museum, and paintshop pro is written still written in Python,TCL and ASM ... a common denominator of these to "Fast and Great image processors is ASM, although photoshop may have Upgraded to delphi now it is still pascal. and any speed problems are comming from pascal but this is because we like the way programs look and not what they do now days. I would like to make a Photoshop Clone in pure ASM which I have been working on and its comming along rather well. not code,interpret,arange,rewwrite,etc.... Just code and go process complete.

其他回答

如果您没有查看编译器生成的内容的反汇编,您实际上无法知道编写良好的C代码是否真的很快。很多时候你会发现“写得好”是主观的。

因此,没有必要用汇编程序来获得最快的代码,但出于同样的原因,了解汇编程序当然是值得的。

一个更著名的组装片段来自Michael Abrash的纹理映射循环(在这里详细解释):

add edx,[DeltaVFrac] ; add in dVFrac
sbb ebp,ebp ; store carry
mov [edi],al ; write pixel n
mov al,[esi] ; fetch pixel n+1
add ecx,ebx ; add in dUFrac
adc esi,[4*ebp + UVStepVCarry]; add in steps

现在,大多数编译器将高级CPU特定指令表示为intrinsic,即编译为实际指令的函数。MS Visual c++支持MMX、SSE、SSE2、SSE3和SSE4的intrinsic,因此您不必太过担心使用特定于平台的指令来进行汇编。Visual c++还可以通过适当的/ARCH设置来利用您所针对的实际体系结构。

http://cr.yp.to/qhasm.html有很多例子。

以下是我个人经历中的几个例子:

Access to instructions that are not accessible from C. For instance, many architectures (like x86-64, IA-64, DEC Alpha, and 64-bit MIPS or PowerPC) support a 64 bit by 64 bit multiplication producing a 128 bit result. GCC recently added an extension providing access to such instructions, but before that assembly was required. And access to this instruction can make a huge difference on 64-bit CPUs when implementing something like RSA - sometimes as much as a factor of 4 improvement in performance. Access to CPU-specific flags. The one that has bitten me a lot is the carry flag; when doing a multiple-precision addition, if you don't have access to the CPU carry bit one must instead compare the result to see if it overflowed, which takes 3-5 more instructions per limb; and worse, which are quite serial in terms of data accesses, which kills performance on modern superscalar processors. When processing thousands of such integers in a row, being able to use addc is a huge win (there are superscalar issues with contention on the carry bit as well, but modern CPUs deal pretty well with it). SIMD. Even autovectorizing compilers can only do relatively simple cases, so if you want good SIMD performance it's unfortunately often necessary to write the code directly. Of course you can use intrinsics instead of assembly but once you're at the intrinsics level you're basically writing assembly anyway, just using the compiler as a register allocator and (nominally) instruction scheduler. (I tend to use intrinsics for SIMD simply because the compiler can generate the function prologues and whatnot for me so I can use the same code on Linux, OS X, and Windows without having to deal with ABI issues like function calling conventions, but other than that the SSE intrinsics really aren't very nice - the Altivec ones seem better though I don't have much experience with them). As examples of things a (current day) vectorizing compiler can't figure out, read about bitslicing AES or SIMD error correction - one could imagine a compiler that could analyze algorithms and generate such code, but it feels to me like such a smart compiler is at least 30 years away from existing (at best).

On the other hand, multicore machines and distributed systems have shifted many of the biggest performance wins in the other direction - get an extra 20% speedup writing your inner loops in assembly, or 300% by running them across multiple cores, or 10000% by running them across a cluster of machines. And of course high level optimizations (things like futures, memoization, etc) are often much easier to do in a higher level language like ML or Scala than C or asm, and often can provide a much bigger performance win. So, as always, there are tradeoffs to be made.

只有在使用编译器不支持的特殊用途指令集时。

为了最大限度地利用具有多个管道和预测分支的现代CPU的计算能力,您需要以这样一种方式来构造汇编程序:a)人类几乎不可能编写b)甚至更不可能维护。

此外,更好的算法、数据结构和内存管理将为您提供至少一个数量级的性能,而不是在汇编中进行的微观优化。