了解汇编程序的原因之一是,有时可以使用汇编程序来编写比用高级语言(特别是C语言)编写的代码性能更好的代码。然而,我也听人说过很多次,尽管这并非完全错误,但实际上可以使用汇编程序来生成性能更好的代码的情况极其罕见,并且需要汇编方面的专业知识和经验。

这个问题甚至没有涉及到这样一个事实,即汇编程序指令将是特定于机器的、不可移植的,或者汇编程序的任何其他方面。当然,除了这一点之外,了解汇编还有很多很好的理由,但这是一个需要示例和数据的具体问题,而不是关于汇编程序与高级语言的扩展论述。

谁能提供一些具体的例子,说明使用现代编译器汇编代码比编写良好的C代码更快,并且您能否用分析证据支持这一说法?我相信这些案例确实存在,但我真的很想知道这些案例到底有多深奥,因为这似乎是一个有争议的问题。


当前回答

以下是我个人经历中的几个例子:

Access to instructions that are not accessible from C. For instance, many architectures (like x86-64, IA-64, DEC Alpha, and 64-bit MIPS or PowerPC) support a 64 bit by 64 bit multiplication producing a 128 bit result. GCC recently added an extension providing access to such instructions, but before that assembly was required. And access to this instruction can make a huge difference on 64-bit CPUs when implementing something like RSA - sometimes as much as a factor of 4 improvement in performance. Access to CPU-specific flags. The one that has bitten me a lot is the carry flag; when doing a multiple-precision addition, if you don't have access to the CPU carry bit one must instead compare the result to see if it overflowed, which takes 3-5 more instructions per limb; and worse, which are quite serial in terms of data accesses, which kills performance on modern superscalar processors. When processing thousands of such integers in a row, being able to use addc is a huge win (there are superscalar issues with contention on the carry bit as well, but modern CPUs deal pretty well with it). SIMD. Even autovectorizing compilers can only do relatively simple cases, so if you want good SIMD performance it's unfortunately often necessary to write the code directly. Of course you can use intrinsics instead of assembly but once you're at the intrinsics level you're basically writing assembly anyway, just using the compiler as a register allocator and (nominally) instruction scheduler. (I tend to use intrinsics for SIMD simply because the compiler can generate the function prologues and whatnot for me so I can use the same code on Linux, OS X, and Windows without having to deal with ABI issues like function calling conventions, but other than that the SSE intrinsics really aren't very nice - the Altivec ones seem better though I don't have much experience with them). As examples of things a (current day) vectorizing compiler can't figure out, read about bitslicing AES or SIMD error correction - one could imagine a compiler that could analyze algorithms and generate such code, but it feels to me like such a smart compiler is at least 30 years away from existing (at best).

On the other hand, multicore machines and distributed systems have shifted many of the biggest performance wins in the other direction - get an extra 20% speedup writing your inner loops in assembly, or 300% by running them across multiple cores, or 10000% by running them across a cluster of machines. And of course high level optimizations (things like futures, memoization, etc) are often much easier to do in a higher level language like ML or Scala than C or asm, and often can provide a much bigger performance win. So, as always, there are tradeoffs to be made.

其他回答

GCC已经成为广泛使用的编译器。它的优化通常不是很好。比编写汇编程序的普通程序员好得多,但就实际性能而言,并没有那么好。有些编译器产生的代码简直令人难以置信。所以一般来说,有很多地方你可以进入编译器的输出,调整汇编器的性能,和/或简单地从头重写例程。

我需要对192位或256位的每次中断进行移位操作,每50微秒发生一次。

它通过一个固定的映射(硬件限制)实现。使用C语言,制作它只需要大约10微秒。当我把它翻译到Assembler时,考虑到这个映射的特定特性,特定的寄存器缓存,并使用面向位的操作;它只花了不到3.5微秒的时间。

这很难具体地回答,因为这个问题非常不具体:到底什么是“现代编译器”?

理论上,几乎任何手动的汇编器优化都可以由编译器来完成——实际上它是否已经完成,不能笼统地说,只能说特定编译器的特定版本。许多可能需要花费大量的精力来确定它们是否可以在特定的上下文中应用而不产生副作用,以至于编译器编写者不会为它们烦恼。

在处理器速度以MHz为单位,屏幕尺寸低于100万像素的时代,一个众所周知的更快显示的技巧是展开循环:为屏幕的每个扫描行写操作。它避免了维护循环索引的开销!再加上检测屏幕刷新,它非常有效。 这是C编译器不会做的事情……(虽然通常可以在速度优化和规模优化之间进行选择,但我认为前者使用了一些类似的技巧。)

我知道有些人喜欢用汇编语言编写Windows应用程序。他们声称他们更快(很难证明)和更小(确实如此!)。 显然,虽然这样做很有趣,但可能会浪费时间(当然,学习目的除外!),特别是对于GUI操作…… 现在,也许某些操作(比如在文件中搜索字符串)可以通过精心编写的汇编代码进行优化。

这完全取决于你的工作量。

对于日常操作,C和c++已经很好了,但是有一些特定的工作负载(任何涉及视频的转换(压缩、解压缩、图像效果等))几乎需要组装才能达到性能。

它们通常还涉及使用特定于CPU的芯片组扩展(MME/MMX/SSE/等等),这些扩展是为这些类型的操作而优化的。