假设我们有两个堆栈,没有其他临时变量。

是否有可能“构造”一个队列数据结构只使用两个堆栈?


当前回答

// Two stacks s1 Original and s2 as Temp one
    private Stack<Integer> s1 = new Stack<Integer>();
    private Stack<Integer> s2 = new Stack<Integer>();

    /*
     * Here we insert the data into the stack and if data all ready exist on
     * stack than we copy the entire stack s1 to s2 recursively and push the new
     * element data onto s1 and than again recursively call the s2 to pop on s1.
     * 
     * Note here we can use either way ie We can keep pushing on s1 and than
     * while popping we can remove the first element from s2 by copying
     * recursively the data and removing the first index element.
     */
    public void insert( int data )
    {
        if( s1.size() == 0 )
        {
            s1.push( data );
        }
        else
        {
            while( !s1.isEmpty() )
            {
                s2.push( s1.pop() );
            }
            s1.push( data );
            while( !s2.isEmpty() )
            {
                s1.push( s2.pop() );
            }
        }
    }

    public void remove()
    {
        if( s1.isEmpty() )
        {
            System.out.println( "Empty" );
        }
        else
        {
            s1.pop();

        }
    }

其他回答

不过,时间的复杂性会更糟。一个好的队列实现在常数时间内完成所有事情。

Edit

不知道为什么我的答案在这里被否决了。如果我们编程,我们会关心时间复杂度,使用两个标准堆栈来创建队列是低效的。这是一个非常有效和相关的观点。如果有人觉得有必要再投反对票,我很想知道为什么。

更详细一点:关于为什么使用两个堆栈比使用一个队列更糟糕:如果您使用两个堆栈,并且有人在发件箱为空时调用dequeue,则需要线性时间才能到达收件箱的底部(正如您可以在Dave的代码中看到的那样)。

您可以将队列实现为单链表(每个元素指向下一个插入的元素),保留一个额外的指针指向最后一个插入的元素进行推操作(或使其成为循环列表)。在此数据结构上实现队列和出队列非常容易,只需常数时间即可完成。这是最坏情况的常数时间,不是平摊。而且,正如注释中要求澄清的那样,最坏情况下常数时间严格来说比平摊常数时间要好。

// Two stacks s1 Original and s2 as Temp one
    private Stack<Integer> s1 = new Stack<Integer>();
    private Stack<Integer> s2 = new Stack<Integer>();

    /*
     * Here we insert the data into the stack and if data all ready exist on
     * stack than we copy the entire stack s1 to s2 recursively and push the new
     * element data onto s1 and than again recursively call the s2 to pop on s1.
     * 
     * Note here we can use either way ie We can keep pushing on s1 and than
     * while popping we can remove the first element from s2 by copying
     * recursively the data and removing the first index element.
     */
    public void insert( int data )
    {
        if( s1.size() == 0 )
        {
            s1.push( data );
        }
        else
        {
            while( !s1.isEmpty() )
            {
                s2.push( s1.pop() );
            }
            s1.push( data );
            while( !s2.isEmpty() )
            {
                s1.push( s2.pop() );
            }
        }
    }

    public void remove()
    {
        if( s1.isEmpty() )
        {
            System.out.println( "Empty" );
        }
        else
        {
            s1.pop();

        }
    }

在Swift中使用两个堆栈的队列实现:

struct Stack<Element> {
    var items = [Element]()

    var count : Int {
        return items.count
    }

    mutating func push(_ item: Element) {
        items.append(item)
    }

    mutating func pop() -> Element? {
        return items.removeLast()
    }

    func peek() -> Element? {
        return items.last
    }
}

struct Queue<Element> {
    var inStack = Stack<Element>()
    var outStack = Stack<Element>()

    mutating func enqueue(_ item: Element) {
        inStack.push(item)
    }

    mutating func dequeue() -> Element? {
        fillOutStack() 
        return outStack.pop()
    }

    mutating func peek() -> Element? {
        fillOutStack()
        return outStack.peek()
    }

    private mutating func fillOutStack() {
        if outStack.count == 0 {
            while inStack.count != 0 {
                outStack.push(inStack.pop()!)
            }
        }
    }
}

我将在Go中回答这个问题,因为Go在其标准库中没有丰富的集合。

由于堆栈真的很容易实现,我想我应该尝试使用两个堆栈来完成一个双端队列。为了更好地理解我是如何得到我的答案的,我将实现分为两部分,第一部分希望更容易理解,但它是不完整的。

type IntQueue struct {
    front       []int
    back        []int
}

func (q *IntQueue) PushFront(v int) {
    q.front = append(q.front, v)
}

func (q *IntQueue) Front() int {
    if len(q.front) > 0 {
        return q.front[len(q.front)-1]
    } else {
        return q.back[0]
    }
}

func (q *IntQueue) PopFront() {
    if len(q.front) > 0 {
        q.front = q.front[:len(q.front)-1]
    } else {
        q.back = q.back[1:]
    }
}

func (q *IntQueue) PushBack(v int) {
    q.back = append(q.back, v)
}

func (q *IntQueue) Back() int {
    if len(q.back) > 0 {
        return q.back[len(q.back)-1]
    } else {
        return q.front[0]
    }
}

func (q *IntQueue) PopBack() {
    if len(q.back) > 0 {
        q.back = q.back[:len(q.back)-1]
    } else {
        q.front = q.front[1:]
    }
}

它基本上是两个堆栈,我们允许堆栈的底部相互操纵。我还使用了STL命名约定,其中堆栈的传统push、pop、peek操作都有一个front/back前缀,无论它们是指队列的前面还是后面。

上面代码的问题是它没有非常有效地使用内存。事实上,它会不断增长,直到空间耗尽。这太糟糕了。解决这个问题的方法是尽可能重用堆栈空间的底部。我们必须引入一个偏移量来跟踪这一点,因为围棋中的切片一旦收缩就不能在前面生长。

type IntQueue struct {
    front       []int
    frontOffset int
    back        []int
    backOffset  int
}

func (q *IntQueue) PushFront(v int) {
    if q.backOffset > 0 {
        i := q.backOffset - 1
        q.back[i] = v
        q.backOffset = i
    } else {
        q.front = append(q.front, v)
    }
}

func (q *IntQueue) Front() int {
    if len(q.front) > 0 {
        return q.front[len(q.front)-1]
    } else {
        return q.back[q.backOffset]
    }
}

func (q *IntQueue) PopFront() {
    if len(q.front) > 0 {
        q.front = q.front[:len(q.front)-1]
    } else {
        if len(q.back) > 0 {
            q.backOffset++
        } else {
            panic("Cannot pop front of empty queue.")
        }
    }
}

func (q *IntQueue) PushBack(v int) {
    if q.frontOffset > 0 {
        i := q.frontOffset - 1
        q.front[i] = v
        q.frontOffset = i
    } else {
        q.back = append(q.back, v)
    }
}

func (q *IntQueue) Back() int {
    if len(q.back) > 0 {
        return q.back[len(q.back)-1]
    } else {
        return q.front[q.frontOffset]
    }
}

func (q *IntQueue) PopBack() {
    if len(q.back) > 0 {
        q.back = q.back[:len(q.back)-1]
    } else {
        if len(q.front) > 0 {
            q.frontOffset++
        } else {
            panic("Cannot pop back of empty queue.")
        }
    }
}

有很多小函数,但6个函数中有3个只是另一个的镜像。

您必须从第一个堆栈中取出所有元素来获取底部元素。然后在每次“出队列”操作时将它们都放回第二个堆栈。