我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

老问题了,但我想知道“非功能性”需求。在我看来,应该给出一个线索——如果这个问题是在其他地方问的,而不是在一本书里,然后继续讨论所有的可能性的利弊。通常情况下,这似乎是在工作面试中问的,让我困惑的是,在不知道软要求的情况下,不可能给出一个明确的答案,即。“查找缺失的数字一定非常快,因为它一秒钟要使用x次。”

我想这样的问题或许可以给出一个合理的答案。

我将所有数字归并排序到一个新文件中,每个int使用4个字节。当然,一开始做起来会很慢。但是它可以用很小的内存量来完成(你不需要把所有内存都保存在RAM中) 使用二进制搜索检查数字是否存在于预排序文件中。因为每个值仍然是4个字节,这没有问题

缺点:

文件大小 第一次排序很慢——但只需要一次

优点:

查找起来非常快

这又是一个非常适合写书的问题。但我认为,当要解决的问题还不完全清楚时,在寻求单一的最佳解决方案时,这是一个奇怪的问题。

其他回答

统计信息算法解决这个问题的次数比确定性方法少。

如果允许使用非常大的整数,则可以生成一个在O(1)时间内可能唯一的数字。像GUID这样的伪随机128位整数只会与集合中现有的40亿个整数中的一个发生碰撞,这种情况的概率不到640亿亿亿分之一。

If integers are limited to 32 bits then one can generate a number that is likely to be unique in a single pass using much less than 10 MB. The odds that a pseudo-random 32-bit integer will collide with one of the 4 billion existing integers is about 93% (4e9 / 2^32). The odds that 1000 pseudo-random integers will all collide is less than one in 12,000 billion billion billion (odds-of-one-collision ^ 1000). So if a program maintains a data structure containing 1000 pseudo-random candidates and iterates through the known integers, eliminating matches from the candidates, it is all but certain to find at least one integer that is not in the file.

关于这个问题的详细讨论已经在Jon Bentley的“第一栏”中讨论过。“编程珍珠”Addison-Wesley第3-10页

Bentley讨论了几种方法,包括外部排序,使用几个外部文件的归并排序等,但Bentley建议的最佳方法是使用位字段的单次传递算法,他幽默地称之为“神奇排序”:) 来看看这个问题,40亿个数字可以表示为:

4 billion bits = (4000000000 / 8) bytes = about 0.466 GB

实现bitset的代码很简单:(取自解决方案页面)

#define BITSPERWORD 32
#define SHIFT 5
#define MASK 0x1F
#define N 10000000
int a[1 + N/BITSPERWORD];

void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }
void clr(int i) {        a[i>>SHIFT] &= ~(1<<(i & MASK)); }
int  test(int i){ return a[i>>SHIFT] &   (1<<(i & MASK)); }

Bentley的算法只对文件进行一次传递,在数组中设置适当的位,然后使用上面的测试宏检查这个数组以找到缺失的数字。

如果可用内存小于0.466 GB, Bentley建议使用k-pass算法,根据可用内存将输入划分为不同的范围。举一个非常简单的例子,如果只有1个字节(即处理8个数字的内存)可用,并且范围从0到31,我们将其分为0到7、8-15、16-22等范围,并在每次32/8 = 4次传递中处理这个范围。

HTH.

通过在某种树结构中存储未访问的整数范围,可以在读取现有整数后加快查找丢失的整数的速度。

首先存储[0..]4294967295],每次读取一个整数,你拼接它所在的范围,当它变成空的时候删除一个范围。最后,你得到了在范围内缺少的精确的整数集。所以如果你把5作为第一个整数,你会得到[0..4]和[6..4294967295]。

这比标记位要慢得多,所以它只适用于10MB的情况,前提是你可以将树的较低级别存储在文件中。

存储这种树的一种方法是使用b -树,其范围的开始作为键,范围的结束作为值。最坏的情况是当你得到的都是奇数或偶数时,这意味着要为树存储2^31个值或几十GB……哎哟。最好的情况是一个排序文件,其中您只需要为整个树使用几个整数。

所以这并不是正确的答案,但我想我应该提到这种方法。我想我面试不及格;-)

既然我们在做创造性的回答,下面是另一个问题。

使用外部排序程序对输入文件进行数字排序。这将适用于任何数量的内存(如果需要,它将使用文件存储)。 通读排序文件并输出缺少的第一个数字。

我想出了下面的算法。

我的想法是:遍历整个整数文件一次,对每个位位置数0和1。0和1的数量必须是2^(numOfBits)/2,因此,如果数量比预期的少,我们可以使用我们的结果数。

例如,假设整数是32位,那么我们需要

int[] ones = new int[32];
int[] zeroes = new int[32];

对于每个数字,我们必须迭代32位,并增加0或1的值:

for(int i = 0; i < 32; i++){
   ones[i] += (val>>i&0x1); 
   zeroes[i] += (val>>i&0x1)==1?0:1;
}

最后,在文件处理后:

int res = 0;
for(int i = 0; i < 32; i++){
   if(ones[i] < (long)1<<31)res|=1<<i;
}
return res;

注意:在某些语言中(如Java) 1<<31是负数,因此,(长)1<<31是正确的方法