我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

2128*1018 + 1(即(28)16*1018 + 1)——这难道不是今天的普遍答案吗?这表示一个不能保存在16eb文件中的数字,这是当前任何文件系统中的最大文件大小。

其他回答

好的,这并没有经过充分的思考,因为它假设文件中的整数遵循某种静态分布。显然他们不需要这样做,但即使这样,也应该试试这个:


有≈43亿个32位整数。我们不知道它们在文件中是如何分布的,但最糟糕的情况是具有最高香农熵的情况:均匀分布。在这种情况下,任何一个整数不出现在文件中的概率为

((2³²-1)/2³²)⁰⁰⁰⁰≈.4

The lower the Shannon entropy, the higher this probability gets on the average, but even for this worst case we have a chance of 90% to find a nonoccurring number after 5 guesses with random integers. Just create such numbers with a pseudorandom generator, store them in a list. Then read int after int and compare it to all of your guesses. When there's a match, remove this list entry. After having been through all of the file, chances are you will have more than one guess left. Use any of them. In the rare (10% even at worst case) event of no guess remaining, get a new set of random integers, perhaps more this time (10->99%).

内存消耗:几十个字节,复杂度:O(n),开销:neclectable,因为大部分时间将花费在不可避免的硬盘访问上,而不是比较int类型。 当我们不假设静态分布时,实际最坏的情况是每个整数都出现最大值。曾经,因为那时只有 1 - 4000000000/2³²≈6% 所有的整数都不会出现在文件中。因此,您需要更多的猜测,但这仍然不会消耗大量的内存。

统计信息算法解决这个问题的次数比确定性方法少。

如果允许使用非常大的整数,则可以生成一个在O(1)时间内可能唯一的数字。像GUID这样的伪随机128位整数只会与集合中现有的40亿个整数中的一个发生碰撞,这种情况的概率不到640亿亿亿分之一。

If integers are limited to 32 bits then one can generate a number that is likely to be unique in a single pass using much less than 10 MB. The odds that a pseudo-random 32-bit integer will collide with one of the 4 billion existing integers is about 93% (4e9 / 2^32). The odds that 1000 pseudo-random integers will all collide is less than one in 12,000 billion billion billion (odds-of-one-collision ^ 1000). So if a program maintains a data structure containing 1000 pseudo-random candidates and iterates through the known integers, eliminating matches from the candidates, it is all but certain to find at least one integer that is not in the file.

2128*1018 + 1(即(28)16*1018 + 1)——这难道不是今天的普遍答案吗?这表示一个不能保存在16eb文件中的数字,这是当前任何文件系统中的最大文件大小。

如果没有大小限制,最快的方法是取文件的长度,并生成文件的长度+1个随机数字(或者只是“11111…”s).优点:您甚至不需要读取文件,并且可以将内存使用最小化到几乎为零。缺点:将打印数十亿个数字。

但是,如果唯一的因素是最小化内存使用,而其他因素都不重要,那么这将是最佳解决方案。它甚至可能让你获得“最严重滥用规则”奖。

使用BitSet。40亿个整数(假设最多2^32个整数)以每字节8个的速度打包到BitSet中,大约是2^32 / 2^3 = 2^29 = 0.5 Gb。

要添加更多的细节-每次读取一个数字时,在BitSet中设置相应的位。然后,遍历BitSet以找到第一个不存在的数字。事实上,你可以通过重复选择一个随机数并测试它是否存在来有效地做到这一点。

实际上BitSet.nextClearBit(0)会告诉你第一个非设置位。

看看BitSet API,它似乎只支持0..MAX_INT,所以你可能需要2个bitset -一个用于+ ve数字,一个用于- ve数字-但内存需求不会改变。