我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

通过在某种树结构中存储未访问的整数范围,可以在读取现有整数后加快查找丢失的整数的速度。

首先存储[0..]4294967295],每次读取一个整数,你拼接它所在的范围,当它变成空的时候删除一个范围。最后,你得到了在范围内缺少的精确的整数集。所以如果你把5作为第一个整数,你会得到[0..4]和[6..4294967295]。

这比标记位要慢得多,所以它只适用于10MB的情况,前提是你可以将树的较低级别存储在文件中。

存储这种树的一种方法是使用b -树,其范围的开始作为键,范围的结束作为值。最坏的情况是当你得到的都是奇数或偶数时,这意味着要为树存储2^31个值或几十GB……哎哟。最好的情况是一个排序文件,其中您只需要为整个树使用几个整数。

所以这并不是正确的答案,但我想我应该提到这种方法。我想我面试不及格;-)

其他回答

给定一个包含40亿个整数的输入文件,提供一个算法 生成文件中不包含的整数。假设你 有1gib的内存。接着问如果只有你会怎么做 10内存MiB。 文件大小为4 * 109 * 4字节= 16gib

如果是32位无符号整数

0 <= Number < 2^32
0 <= Number < 4,294,967,296

我建议的解决方案是:c++不进行错误检查

#include <vector>
#include <fstream>
#include <iostream>
using namespace std;

int main ()
{
    const long SIZE = 1L << 32;

    std::vector<bool> checker(SIZE, false);

    std::ifstream infile("file.txt");  // TODO: error checking

    unsigned int num = 0;

    while (infile >> num)
    {
        checker[num] = true ;
    }

    infile.close();

    // print missing numbers

    for (long i = 0; i < SIZE; i++)
    {
        if (!checker[i])
            cout << i << endl ;
    }

    return 0;
}

复杂性

Space ~ 232 bits = 229 Bytes = 219 KB = 29 MB = 1/2 GB 时间~单次通过 完整性~是

2128*1018 + 1(即(28)16*1018 + 1)——这难道不是今天的普遍答案吗?这表示一个不能保存在16eb文件中的数字,这是当前任何文件系统中的最大文件大小。

出于某种原因,当我读到这个问题时,我想到了对角化。假设是任意大的整数。

Read the first number. Left-pad it with zero bits until you have 4 billion bits. If the first (high-order) bit is 0, output 1; else output 0. (You don't really have to left-pad: you just output a 1 if there are not enough bits in the number.) Do the same with the second number, except use its second bit. Continue through the file in this way. You will output a 4-billion bit number one bit at a time, and that number will not be the same as any in the file. Proof: it were the same as the nth number, then they would agree on the nth bit, but they don't by construction.

如果您不假设32位约束,则只返回一个随机生成的64位数字(如果您比较悲观,则返回128位数字)。碰撞的几率是1 / 2^64/(4*10^9)= 4611686018.4(大约40亿分之一)。大多数时候你都是对的!

(开玩笑的…种)。

关于这个问题的详细讨论已经在Jon Bentley的“第一栏”中讨论过。“编程珍珠”Addison-Wesley第3-10页

Bentley讨论了几种方法,包括外部排序,使用几个外部文件的归并排序等,但Bentley建议的最佳方法是使用位字段的单次传递算法,他幽默地称之为“神奇排序”:) 来看看这个问题,40亿个数字可以表示为:

4 billion bits = (4000000000 / 8) bytes = about 0.466 GB

实现bitset的代码很简单:(取自解决方案页面)

#define BITSPERWORD 32
#define SHIFT 5
#define MASK 0x1F
#define N 10000000
int a[1 + N/BITSPERWORD];

void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }
void clr(int i) {        a[i>>SHIFT] &= ~(1<<(i & MASK)); }
int  test(int i){ return a[i>>SHIFT] &   (1<<(i & MASK)); }

Bentley的算法只对文件进行一次传递,在数组中设置适当的位,然后使用上面的测试宏检查这个数组以找到缺失的数字。

如果可用内存小于0.466 GB, Bentley建议使用k-pass算法,根据可用内存将输入划分为不同的范围。举一个非常简单的例子,如果只有1个字节(即处理8个数字的内存)可用,并且范围从0到31,我们将其分为0到7、8-15、16-22等范围,并在每次32/8 = 4次传递中处理这个范围。

HTH.