如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
下面是一个Scala实现:
def calculateHaversineDistance(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double = {
val long2 = lon2 * math.Pi / 180
val lat2 = lat2 * math.Pi / 180
val long1 = lon1 * math.Pi / 180
val lat1 = lat1 * math.Pi / 180
val dlon = long2 - long1
val dlat = lat2 - lat1
val a = math.pow(math.sin(dlat / 2), 2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon / 2), 2)
val c = 2 * math.atan2(Math.sqrt(a), math.sqrt(1 - a))
val haversineDistance = 3961 * c // 3961 = radius of earth in miles
haversineDistance
}
其他回答
下面是Haversine公式的typescript实现
static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
var deg2Rad = deg => {
return deg * Math.PI / 180;
}
var r = 6371; // Radius of the earth in km
var dLat = deg2Rad(lat2 - lat1);
var dLon = deg2Rad(lon2 - lon1);
var a =
Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
var d = r * c; // Distance in km
return d;
}
哈弗辛公式在大多数情况下都是很好的公式,其他答案已经包含了它所以我就不占用空间了。但重要的是要注意,无论使用什么公式(是的,不仅仅是一个)。因为可能的精度范围很大,以及所需的计算时间。公式的选择需要更多的思考,而不是简单的无脑答案。
这个帖子来自nasa的一个人,是我在讨论这些选项时发现的最好的一个
http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
例如,如果您只是在100英里半径内按距离对行进行排序。地平公式比哈弗辛公式快得多。
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
注意这里只有一个余弦和一个平方根。在哈弗辛公式中有9个。
下面是一个c#实现:
static class DistanceAlgorithm
{
const double PIx = 3.141592653589793;
const double RADIUS = 6378.16;
/// <summary>
/// Convert degrees to Radians
/// </summary>
/// <param name="x">Degrees</param>
/// <returns>The equivalent in radians</returns>
public static double Radians(double x)
{
return x * PIx / 180;
}
/// <summary>
/// Calculate the distance between two places.
/// </summary>
/// <param name="lon1"></param>
/// <param name="lat1"></param>
/// <param name="lon2"></param>
/// <param name="lat2"></param>
/// <returns></returns>
public static double DistanceBetweenPlaces(
double lon1,
double lat1,
double lon2,
double lat2)
{
double dlon = Radians(lon2 - lon1);
double dlat = Radians(lat2 - lat1);
double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
return angle * RADIUS;
}
}
PIP安装haversine
Python实现
原产地是美国毗连的中心。
from haversine import haversine, Unit
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, unit=Unit.MILES)
要得到以千米为单位的答案,只需设置unit= unit。千米(这是默认值)。
下面是一个Scala实现:
def calculateHaversineDistance(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double = {
val long2 = lon2 * math.Pi / 180
val lat2 = lat2 * math.Pi / 180
val long1 = lon1 * math.Pi / 180
val lat1 = lat1 * math.Pi / 180
val dlon = long2 - long1
val dlat = lat2 - lat1
val a = math.pow(math.sin(dlat / 2), 2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon / 2), 2)
val c = 2 * math.atan2(Math.sqrt(a), math.sqrt(1 - a))
val haversineDistance = 3961 * c // 3961 = radius of earth in miles
haversineDistance
}