如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
正如指出的那样,精确的计算应该考虑到地球不是一个完美的球体。以下是这里提供的各种算法的一些比较:
geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km
geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km
geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km
geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km
在小范围内,Keerthana的算法似乎与谷歌Maps的算法一致。谷歌Maps似乎没有遵循任何简单的算法,这表明它可能是这里最准确的方法。
不管怎样,这里是Keerthana算法的Javascript实现:
function geoDistance(lat1, lng1, lat2, lng2){
const a = 6378.137; // equitorial radius in km
const b = 6356.752; // polar radius in km
var sq = x => (x*x);
var sqr = x => Math.sqrt(x);
var cos = x => Math.cos(x);
var sin = x => Math.sin(x);
var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));
lat1 = lat1 * Math.PI / 180;
lng1 = lng1 * Math.PI / 180;
lat2 = lat2 * Math.PI / 180;
lng2 = lng2 * Math.PI / 180;
var R1 = radius(lat1);
var x1 = R1*cos(lat1)*cos(lng1);
var y1 = R1*cos(lat1)*sin(lng1);
var z1 = R1*sin(lat1);
var R2 = radius(lat2);
var x2 = R2*cos(lat2)*cos(lng2);
var y2 = R2*cos(lat2)*sin(lng2);
var z2 = R2*sin(lat2);
return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}
其他回答
精确计算中长点之间距离所需的函数是复杂的,陷阱也很多。我不推荐哈弗辛或其他球形的解决方案,因为有很大的不准确性(地球不是一个完美的球体)。vincenty公式更好,但在某些情况下会抛出错误,即使编码正确。
与其自己编写函数,我建议使用geopy,它已经实现了非常精确的地理库来进行距离计算(论文来自作者)。
#pip install geopy
from geopy.distance import geodesic
NY = [40.71278,-74.00594]
Beijing = [39.90421,116.40739]
print("WGS84: ",geodesic(NY, Beijing).km) #WGS84 is Standard
print("Intl24: ",geodesic(NY, Beijing, ellipsoid='Intl 1924').km) #geopy includes different ellipsoids
print("Custom ellipsoid: ",geodesic(NY, Beijing, ellipsoid=(6377., 6356., 1 / 297.)).km) #custom ellipsoid
#supported ellipsoids:
#model major (km) minor (km) flattening
#'WGS-84': (6378.137, 6356.7523142, 1 / 298.257223563)
#'GRS-80': (6378.137, 6356.7523141, 1 / 298.257222101)
#'Airy (1830)': (6377.563396, 6356.256909, 1 / 299.3249646)
#'Intl 1924': (6378.388, 6356.911946, 1 / 297.0)
#'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465)
#'GRS-67': (6378.1600, 6356.774719, 1 / 298.25)
这个库的唯一缺点是它不支持向量化计算。 对于向量化计算,您可以使用新的gevectorslib。
#pip install geovectorslib
from geovectorslib import inverse
print(inverse(lats1,lons1,lats2,lons2)['s12'])
lat和lon是numpy数组。Geovectorslib是非常准确和非常快!我还没有找到改变椭球的方法。标准采用WGS84椭球,是大多数用途的最佳选择。
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
var miles = d / 1.609344;
if ( units == 'km' ) {
return d;
} else {
return miles;
}}
查克的解决方案,也适用于英里。
Java实现在根据哈弗辛公式
double calculateDistance(double latPoint1, double lngPoint1,
double latPoint2, double lngPoint2) {
if(latPoint1 == latPoint2 && lngPoint1 == lngPoint2) {
return 0d;
}
final double EARTH_RADIUS = 6371.0; //km value;
//converting to radians
latPoint1 = Math.toRadians(latPoint1);
lngPoint1 = Math.toRadians(lngPoint1);
latPoint2 = Math.toRadians(latPoint2);
lngPoint2 = Math.toRadians(lngPoint2);
double distance = Math.pow(Math.sin((latPoint2 - latPoint1) / 2.0), 2)
+ Math.cos(latPoint1) * Math.cos(latPoint2)
* Math.pow(Math.sin((lngPoint2 - lngPoint1) / 2.0), 2);
distance = 2.0 * EARTH_RADIUS * Math.asin(Math.sqrt(distance));
return distance; //km value
}
对于那些寻找基于WGS-84和GRS-80标准的Excel公式的人:
=ACOS(COS(RADIANS(90-Lat1))*COS(RADIANS(90-Lat2))+SIN(RADIANS(90-Lat1))*SIN(RADIANS(90-Lat2))*COS(RADIANS(Long1-Long2)))*6371
源
这个链接可能对你有帮助,因为它详细介绍了使用哈弗辛公式来计算距离。
摘录:
这个脚本计算两点之间的大圆距离 也就是说,在地球表面上的最短距离-使用 “半正矢”公式。
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}