如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
正如指出的那样,精确的计算应该考虑到地球不是一个完美的球体。以下是这里提供的各种算法的一些比较:
geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km
geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km
geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km
geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km
在小范围内,Keerthana的算法似乎与谷歌Maps的算法一致。谷歌Maps似乎没有遵循任何简单的算法,这表明它可能是这里最准确的方法。
不管怎样,这里是Keerthana算法的Javascript实现:
function geoDistance(lat1, lng1, lat2, lng2){
const a = 6378.137; // equitorial radius in km
const b = 6356.752; // polar radius in km
var sq = x => (x*x);
var sqr = x => Math.sqrt(x);
var cos = x => Math.cos(x);
var sin = x => Math.sin(x);
var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));
lat1 = lat1 * Math.PI / 180;
lng1 = lng1 * Math.PI / 180;
lat2 = lat2 * Math.PI / 180;
lng2 = lng2 * Math.PI / 180;
var R1 = radius(lat1);
var x1 = R1*cos(lat1)*cos(lng1);
var y1 = R1*cos(lat1)*sin(lng1);
var z1 = R1*sin(lat1);
var R2 = radius(lat2);
var x2 = R2*cos(lat2)*cos(lng2);
var y2 = R2*cos(lat2)*sin(lng2);
var z2 = R2*sin(lat2);
return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}
其他回答
下面是一个c#实现:
static class DistanceAlgorithm
{
const double PIx = 3.141592653589793;
const double RADIUS = 6378.16;
/// <summary>
/// Convert degrees to Radians
/// </summary>
/// <param name="x">Degrees</param>
/// <returns>The equivalent in radians</returns>
public static double Radians(double x)
{
return x * PIx / 180;
}
/// <summary>
/// Calculate the distance between two places.
/// </summary>
/// <param name="lon1"></param>
/// <param name="lat1"></param>
/// <param name="lon2"></param>
/// <param name="lat2"></param>
/// <returns></returns>
public static double DistanceBetweenPlaces(
double lon1,
double lat1,
double lon2,
double lat2)
{
double dlon = Radians(lon2 - lon1);
double dlat = Radians(lat2 - lat1);
double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
return angle * RADIUS;
}
}
在其他答案中,r中的实现是缺失的。
用地质圈包中的distm函数计算两点之间的距离非常简单:
distm(p1, p2, fun = distHaversine)
地点:
p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid
由于地球不是完美的球形,所以椭球体的文森提公式可能是计算距离的最佳方法。因此,在地质圈包中,您可以使用:
distm(p1, p2, fun = distVincentyEllipsoid)
当然,你不一定要使用geosphere包,你也可以用一个函数来计算以R为基底的距离:
hav.dist <- function(long1, lat1, long2, lat2) {
R <- 6371
diff.long <- (long2 - long1)
diff.lat <- (lat2 - lat1)
a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
b <- 2 * asin(pmin(1, sqrt(a)))
d = R * b
return(d)
}
下面是Haversine公式的java实现。
public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
double venueLat, double venueLng) {
double latDistance = Math.toRadians(userLat - venueLat);
double lngDistance = Math.toRadians(userLng - venueLng);
double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}
请注意,这里我们将答案四舍五入到最近的km。
非常感谢这一切。我在Objective-C iPhone应用程序中使用了以下代码:
const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km
double convertToRadians(double val) {
return val * PIx / 180;
}
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
double dlon = convertToRadians(place2.longitude - place1.longitude);
double dlat = convertToRadians(place2.latitude - place1.latitude);
double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
double angle = 2 * asin(sqrt(a));
return angle * RADIO;
}
纬度和经度是十进制的。我没有在asin()调用中使用min(),因为我使用的距离非常小,以至于它们不需要min()。
它给出了错误的答案,直到我传入弧度的值-现在它几乎与从苹果地图应用程序中获得的值相同:-)
额外的更新:
如果你使用的是iOS4或更高版本,那么苹果会提供一些方法来实现相同的功能:
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
MKMapPoint start, finish;
start = MKMapPointForCoordinate(place1);
finish = MKMapPointForCoordinate(place2);
return MKMetersBetweenMapPoints(start, finish) / 1000;
}
我在R中做了一个自定义函数,使用R基本包中可用的函数来计算两个空间点之间的距离(km)。
custom_hav_dist <- function(lat1, lon1, lat2, lon2) {
R <- 6371
Radian_factor <- 0.0174533
lat_1 <- (90-lat1)*Radian_factor
lat_2 <- (90-lat2)*Radian_factor
diff_long <-(lon1-lon2)*Radian_factor
distance_in_km <- 6371*acos((cos(lat_1)*cos(lat_2))+
(sin(lat_1)*sin(lat_2)*cos(diff_long)))
rm(lat1, lon1, lat2, lon2)
return(distance_in_km)
}
样例输出
custom_hav_dist(50.31,19.08,54.14,19.39)
[1] 426.3987
PS:要计算以英里为单位的距离,请将函数R(6371)替换为3958.756(海里使用3440.065)。