我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。
实现这一目标的最佳方式是什么?
我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。
实现这一目标的最佳方式是什么?
当前回答
按日期过滤数据帧的最短方法: 假设你的日期列的类型是datetime64[ns]
# filter by single day
df_filtered = df[df['date'].dt.strftime('%Y-%m-%d') == '2014-01-01']
# filter by single month
df_filtered = df[df['date'].dt.strftime('%Y-%m') == '2014-01']
# filter by single year
df_filtered = df[df['date'].dt.strftime('%Y') == '2014']
其他回答
在pandas版本1.1.3中,我遇到了基于python datetime的索引降序排列的情况。在这种情况下
df.loc['2021-08-01':'2021-08-31']
返回空的。而
df.loc['2021-08-31':'2021-08-01']
返回预期的数据。
用pyjanitor怎么样
它有很酷的功能。
pip后安装pyjanitor
import janitor
df_filtered = df.filter_date(your_date_column_name, start_date, end_date)
如果你的日期是通过导入datetime包来标准化的,你可以简单地使用:
df[(df['date']>datetime.date(2016,1,1)) & (df['date']<datetime.date(2016,3,1))]
使用datetime包来标准化你的日期字符串,你可以使用这个函数:
import datetime
datetime.datetime.strptime
如果您的datetime列具有Pandas datetime类型(例如datetime64[ns]),为了进行适当的过滤,您需要pd。时间戳对象,例如:
from datetime import date
import pandas as pd
value_to_check = pd.Timestamp(date.today().year, 1, 1)
filter_mask = df['date_column'] < value_to_check
filtered_df = df[filter_mask]
如果日期在索引中,则简单地:
df['20160101':'20160301']