我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。

我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp

我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。


当前回答

我写了一个只有头文件的c++ 11 CSV解析器。它经过了良好的测试,快速,支持整个CSV规范(带引号的字段,引号中的分隔符/结束符,引号转义等),并且可以配置为不符合规范的CSV。

配置是通过一个流畅的接口完成的:

// constructor accepts any input stream
CsvParser parser = CsvParser(std::cin)
  .delimiter(';')    // delimited by ; instead of ,
  .quote('\'')       // quoted fields use ' instead of "
  .terminator('\0'); // terminated by \0 instead of by \r\n, \n, or \r

解析只是一个基于范围的for循环:

#include <iostream>
#include "../parser.hpp"

using namespace aria::csv;

int main() {
  std::ifstream f("some_file.csv");
  CsvParser parser(f);

  for (auto& row : parser) {
    for (auto& field : row) {
      std::cout << field << " | ";
    }
    std::cout << std::endl;
  }
}

其他回答

由于所有CSV问题似乎都被重定向到这里,我想我应该在这里发布我的答案。这个回答并没有直接回答提问者的问题。我希望能够读取已知的CSV格式的流,而且每个字段的类型都已经知道。当然,可以使用下面的方法将每个字段处理为字符串类型。

作为我希望能够使用CSV输入流的一个例子,考虑以下输入(取自维基百科的CSV页面):

const char input[] =
"Year,Make,Model,Description,Price\n"
"1997,Ford,E350,\"ac, abs, moon\",3000.00\n"
"1999,Chevy,\"Venture \"\"Extended Edition\"\"\",\"\",4900.00\n"
"1999,Chevy,\"Venture \"\"Extended Edition, Very Large\"\"\",\"\",5000.00\n"
"1996,Jeep,Grand Cherokee,\"MUST SELL!\n\
air, moon roof, loaded\",4799.00\n"
;

然后,我希望能够像这样读取数据:

std::istringstream ss(input);
std::string title[5];
int year;
std::string make, model, desc;
float price;
csv_istream(ss)
    >> title[0] >> title[1] >> title[2] >> title[3] >> title[4];
while (csv_istream(ss)
       >> year >> make >> model >> desc >> price) {
    //...do something with the record...
}

这就是我最后得到的解。

struct csv_istream {
    std::istream &is_;
    csv_istream (std::istream &is) : is_(is) {}
    void scan_ws () const {
        while (is_.good()) {
            int c = is_.peek();
            if (c != ' ' && c != '\t') break;
            is_.get();
        }
    }
    void scan (std::string *s = 0) const {
        std::string ws;
        int c = is_.get();
        if (is_.good()) {
            do {
                if (c == ',' || c == '\n') break;
                if (s) {
                    ws += c;
                    if (c != ' ' && c != '\t') {
                        *s += ws;
                        ws.clear();
                    }
                }
                c = is_.get();
            } while (is_.good());
            if (is_.eof()) is_.clear();
        }
    }
    template <typename T, bool> struct set_value {
        void operator () (std::string in, T &v) const {
            std::istringstream(in) >> v;
        }
    };
    template <typename T> struct set_value<T, true> {
        template <bool SIGNED> void convert (std::string in, T &v) const {
            if (SIGNED) v = ::strtoll(in.c_str(), 0, 0);
            else v = ::strtoull(in.c_str(), 0, 0);
        }
        void operator () (std::string in, T &v) const {
            convert<is_signed_int<T>::val>(in, v);
        }
    };
    template <typename T> const csv_istream & operator >> (T &v) const {
        std::string tmp;
        scan(&tmp);
        set_value<T, is_int<T>::val>()(tmp, v);
        return *this;
    }
    const csv_istream & operator >> (std::string &v) const {
        v.clear();
        scan_ws();
        if (is_.peek() != '"') scan(&v);
        else {
            std::string tmp;
            is_.get();
            std::getline(is_, tmp, '"');
            while (is_.peek() == '"') {
                v += tmp;
                v += is_.get();
                std::getline(is_, tmp, '"');
            }
            v += tmp;
            scan();
        }
        return *this;
    }
    template <typename T>
    const csv_istream & operator >> (T &(*manip)(T &)) const {
        is_ >> manip;
        return *this;
    }
    operator bool () const { return !is_.fail(); }
};

使用以下helper,可以通过c++ 11中的新积分特征模板进行简化:

template <typename T> struct is_signed_int { enum { val = false }; };
template <> struct is_signed_int<short> { enum { val = true}; };
template <> struct is_signed_int<int> { enum { val = true}; };
template <> struct is_signed_int<long> { enum { val = true}; };
template <> struct is_signed_int<long long> { enum { val = true}; };

template <typename T> struct is_unsigned_int { enum { val = false }; };
template <> struct is_unsigned_int<unsigned short> { enum { val = true}; };
template <> struct is_unsigned_int<unsigned int> { enum { val = true}; };
template <> struct is_unsigned_int<unsigned long> { enum { val = true}; };
template <> struct is_unsigned_int<unsigned long long> { enum { val = true}; };

template <typename T> struct is_int {
    enum { val = (is_signed_int<T>::val || is_unsigned_int<T>::val) };
};

在网上试试!

另一个类似于Loki Astari的答案的解决方案,在c++ 11中。这里的行是给定类型的std::元组。代码扫描一行,然后扫描到每个分隔符,然后将值直接转换并转储到元组中(使用一些模板代码)。

for (auto row : csv<std::string, int, float>(file, ',')) {
    std::cout << "first col: " << std::get<0>(row) << std::endl;
}

优势:

非常干净,使用简单,只有c++ 11。 自动类型转换为std::tuple<t1,…>通过算子>>。

缺少什么:

转义和引用 没有错误处理的情况下畸形的CSV。

主要代码:

#include <iterator>
#include <sstream>
#include <string>

namespace csvtools {
    /// Read the last element of the tuple without calling recursively
    template <std::size_t idx, class... fields>
    typename std::enable_if<idx >= std::tuple_size<std::tuple<fields...>>::value - 1>::type
    read_tuple(std::istream &in, std::tuple<fields...> &out, const char delimiter) {
        std::string cell;
        std::getline(in, cell, delimiter);
        std::stringstream cell_stream(cell);
        cell_stream >> std::get<idx>(out);
    }

    /// Read the @p idx-th element of the tuple and then calls itself with @p idx + 1 to
    /// read the next element of the tuple. Automatically falls in the previous case when
    /// reaches the last element of the tuple thanks to enable_if
    template <std::size_t idx, class... fields>
    typename std::enable_if<idx < std::tuple_size<std::tuple<fields...>>::value - 1>::type
    read_tuple(std::istream &in, std::tuple<fields...> &out, const char delimiter) {
        std::string cell;
        std::getline(in, cell, delimiter);
        std::stringstream cell_stream(cell);
        cell_stream >> std::get<idx>(out);
        read_tuple<idx + 1, fields...>(in, out, delimiter);
    }
}

/// Iterable csv wrapper around a stream. @p fields the list of types that form up a row.
template <class... fields>
class csv {
    std::istream &_in;
    const char _delim;
public:
    typedef std::tuple<fields...> value_type;
    class iterator;

    /// Construct from a stream.
    inline csv(std::istream &in, const char delim) : _in(in), _delim(delim) {}

    /// Status of the underlying stream
    /// @{
    inline bool good() const {
        return _in.good();
    }
    inline const std::istream &underlying_stream() const {
        return _in;
    }
    /// @}

    inline iterator begin();
    inline iterator end();
private:

    /// Reads a line into a stringstream, and then reads the line into a tuple, that is returned
    inline value_type read_row() {
        std::string line;
        std::getline(_in, line);
        std::stringstream line_stream(line);
        std::tuple<fields...> retval;
        csvtools::read_tuple<0, fields...>(line_stream, retval, _delim);
        return retval;
    }
};

/// Iterator; just calls recursively @ref csv::read_row and stores the result.
template <class... fields>
class csv<fields...>::iterator {
    csv::value_type _row;
    csv *_parent;
public:
    typedef std::input_iterator_tag iterator_category;
    typedef csv::value_type         value_type;
    typedef std::size_t             difference_type;
    typedef csv::value_type *       pointer;
    typedef csv::value_type &       reference;

    /// Construct an empty/end iterator
    inline iterator() : _parent(nullptr) {}
    /// Construct an iterator at the beginning of the @p parent csv object.
    inline iterator(csv &parent) : _parent(parent.good() ? &parent : nullptr) {
        ++(*this);
    }

    /// Read one row, if possible. Set to end if parent is not good anymore.
    inline iterator &operator++() {
        if (_parent != nullptr) {
            _row = _parent->read_row();
            if (!_parent->good()) {
                _parent = nullptr;
            }
        }
        return *this;
    }

    inline iterator operator++(int) {
        iterator copy = *this;
        ++(*this);
        return copy;
    }

    inline csv::value_type const &operator*() const {
        return _row;
    }

    inline csv::value_type const *operator->() const {
        return &_row;
    }

    bool operator==(iterator const &other) {
        return (this == &other) or (_parent == nullptr and other._parent == nullptr);
    }
    bool operator!=(iterator const &other) {
        return not (*this == other);
    }
};

template <class... fields>
typename csv<fields...>::iterator csv<fields...>::begin() {
    return iterator(*this);
}

template <class... fields>
typename csv<fields...>::iterator csv<fields...>::end() {
    return iterator();
}

我在GitHub上放了一个小的工作示例;我一直用它来解析一些数值数据,它达到了它的目的。

如果你不想在你的项目中包含boost(如果你只打算使用它来进行CSV解析,它就相当大了……)

我在这里有幸使用CSV解析:

http://www.zedwood.com/article/112/cpp-csv-parser

它处理带引号的字段-但不处理内联\n字符(这可能对大多数用途都很好)。

我写了一个很好的解析CSV文件的方法,我认为我应该把它作为一个答案:

#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>

struct CSVDict
{
  std::vector< std::string > inputImages;
  std::vector< double > inputLabels;
};

/**
\brief Splits the string

\param str String to split
\param delim Delimiter on the basis of which splitting is to be done
\return results Output in the form of vector of strings
*/
std::vector<std::string> stringSplit( const std::string &str, const std::string &delim )
{
  std::vector<std::string> results;

  for (size_t i = 0; i < str.length(); i++)
  {
    std::string tempString = "";
    while ((str[i] != *delim.c_str()) && (i < str.length()))
    {
      tempString += str[i];
      i++;
    }
    results.push_back(tempString);
  }

  return results;
}

/**
\brief Parse the supplied CSV File and obtain Row and Column information. 

Assumptions:
1. Header information is in first row
2. Delimiters are only used to differentiate cell members

\param csvFileName The full path of the file to parse
\param inputColumns The string of input columns which contain the data to be used for further processing
\param inputLabels The string of input labels based on which further processing is to be done
\param delim The delimiters used in inputColumns and inputLabels
\return Vector of Vector of strings: Collection of rows and columns
*/
std::vector< CSVDict > parseCSVFile( const std::string &csvFileName, const std::string &inputColumns, const std::string &inputLabels, const std::string &delim )
{
  std::vector< CSVDict > return_CSVDict;
  std::vector< std::string > inputColumnsVec = stringSplit(inputColumns, delim), inputLabelsVec = stringSplit(inputLabels, delim);
  std::vector< std::vector< std::string > > returnVector;
  std::ifstream inFile(csvFileName.c_str());
  int row = 0;
  std::vector< size_t > inputColumnIndeces, inputLabelIndeces;
  for (std::string line; std::getline(inFile, line, '\n');)
  {
    CSVDict tempDict;
    std::vector< std::string > rowVec;
    line.erase(std::remove(line.begin(), line.end(), '"'), line.end());
    rowVec = stringSplit(line, delim);

    // for the first row, record the indeces of the inputColumns and inputLabels
    if (row == 0)
    {
      for (size_t i = 0; i < rowVec.size(); i++)
      {
        for (size_t j = 0; j < inputColumnsVec.size(); j++)
        {
          if (rowVec[i] == inputColumnsVec[j])
          {
            inputColumnIndeces.push_back(i);
          }
        }
        for (size_t j = 0; j < inputLabelsVec.size(); j++)
        {
          if (rowVec[i] == inputLabelsVec[j])
          {
            inputLabelIndeces.push_back(i);
          }
        }
      }
    }
    else
    {
      for (size_t i = 0; i < inputColumnIndeces.size(); i++)
      {
        tempDict.inputImages.push_back(rowVec[inputColumnIndeces[i]]);
      }
      for (size_t i = 0; i < inputLabelIndeces.size(); i++)
      {
        double test = std::atof(rowVec[inputLabelIndeces[i]].c_str());
        tempDict.inputLabels.push_back(std::atof(rowVec[inputLabelIndeces[i]].c_str()));
      }
      return_CSVDict.push_back(tempDict);
    }
    row++;
  }

  return return_CSVDict;
}

这是一个旧线程,但它仍然在搜索结果的顶部,所以我添加我的解决方案使用std::stringstream和一个简单的字符串替换方法由Yves Baumes我在这里找到。

下面的例子将逐行读取文件,忽略以//开头的注释行,并将其他行解析为字符串、int和double的组合。Stringstream进行解析,但希望字段由空格分隔,因此我使用stringreplace首先将逗号转换为空格。它可以处理制表符,但不处理带引号的字符串。

坏的或丢失的输入被简单地忽略,这可能是好事,也可能不是好事,这取决于您的情况。

#include <string>
#include <sstream>
#include <fstream>

void StringReplace(std::string& str, const std::string& oldStr, const std::string& newStr)
// code by  Yves Baumes
// http://stackoverflow.com/questions/1494399/how-do-i-search-find-and-replace-in-a-standard-string
{
  size_t pos = 0;
  while((pos = str.find(oldStr, pos)) != std::string::npos)
  {
     str.replace(pos, oldStr.length(), newStr);
     pos += newStr.length();
  }
}

void LoadCSV(std::string &filename) {
   std::ifstream stream(filename);
   std::string in_line;
   std::string Field;
   std::string Chan;
   int ChanType;
   double Scale;
   int Import;
   while (std::getline(stream, in_line)) {
      StringReplace(in_line, ",", " ");
      std::stringstream line(in_line);
      line >> Field >> Chan >> ChanType >> Scale >> Import;
      if (Field.substr(0,2)!="//") {
         // do your stuff 
         // this is CBuilder code for demonstration, sorry
         ShowMessage((String)Field.c_str() + "\n" + Chan.c_str() + "\n" + IntToStr(ChanType) + "\n" +FloatToStr(Scale) + "\n" +IntToStr(Import));
      }
   }
}