我想按多列对数据帧进行排序。例如,对于下面的数据帧,我希望按列“z”(降序)排序,然后按列“b”(升序)排序:

dd <- data.frame(b = factor(c("Hi", "Med", "Hi", "Low"), 
      levels = c("Low", "Med", "Hi"), ordered = TRUE),
      x = c("A", "D", "A", "C"), y = c(8, 3, 9, 9),
      z = c(1, 1, 1, 2))
dd
    b x y z
1  Hi A 8 1
2 Med D 3 1
3  Hi A 9 1
4 Low C 9 2

当前回答

或者,使用包扣减器

library(Deducer)
dd<- sortData(dd,c("z","b"),increasing= c(FALSE,TRUE))

其他回答

就像很久以前的机械卡片分拣机一样,首先按最不重要的键排序,然后按下一个最重要的键进行排序。不需要库,可以使用任意数量的键以及任意组合的升序和降序键。

 dd <- dd[order(dd$b, decreasing = FALSE),]

现在我们准备好做最重要的关键。这一类是稳定的,最重要的密钥中的任何联系都已经解决。

dd <- dd[order(dd$z, decreasing = TRUE),]

这可能不是最快的,但它确实简单可靠

为了完整起见:您还可以使用BBmisc包中的sortByCol()函数:

library(BBmisc)
sortByCol(dd, c("z", "b"), asc = c(FALSE, TRUE))
    b x y z
4 Low C 9 2
2 Med D 3 1
1  Hi A 8 1
3  Hi A 9 1

性能比较:

library(microbenchmark)
microbenchmark(sortByCol(dd, c("z", "b"), asc = c(FALSE, TRUE)), times = 100000)
median 202.878

library(plyr)
microbenchmark(arrange(dd,desc(z),b),times=100000)
median 148.758

microbenchmark(dd[with(dd, order(-z, b)), ], times = 100000)
median 115.872

有了凯文·赖特(Kevin Wright)在R维基的提示部分发布的这个(非常有用的)功能,这很容易实现。

sort(dd,by = ~ -z + b)
#     b x y z
# 4 Low C 9 2
# 2 Med D 3 1
# 1  Hi A 8 1
# 3  Hi A 9 1

当我想自动化n列的排序过程时,我正在与上述解决方案作斗争,因为每一列的列名都可能不同。我从psych包中找到了一个非常有用的功能,可以直接实现这一点:

dfOrder(myDf, columnIndices)

其中columnIndex是一个或多个列的索引,按要对其排序的顺序排列。此处提供更多信息:

“psych”包中的dfOrder函数

为了完整起见,由于没有太多关于按列编号排序的内容。。。可以肯定的是,这通常是不可取的(因为列的顺序可能会改变,为错误铺平道路),但在某些特定情况下(例如,当您需要快速完成工作,并且没有列改变顺序的风险),这可能是最明智的做法,尤其是在处理大量列时。

在这种情况下,do.call()来拯救:

ind <- do.call(what = "order", args = iris[,c(5,1,2,3)])
iris[ind, ]

##        Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
##    14           4.3         3.0          1.1         0.1     setosa
##    9            4.4         2.9          1.4         0.2     setosa
##    39           4.4         3.0          1.3         0.2     setosa
##    43           4.4         3.2          1.3         0.2     setosa
##    42           4.5         2.3          1.3         0.3     setosa
##    4            4.6         3.1          1.5         0.2     setosa
##    48           4.6         3.2          1.4         0.2     setosa
##    7            4.6         3.4          1.4         0.3     setosa
##    (...)