我有一个数据帧有一个(字符串)列,我想把它分成两个(字符串)列,其中一个列标题为“fips”和另一个“行”

我的数据框架df看起来是这样的:

          row
0    00000 UNITED STATES
1    01000 ALABAMA
2    01001 Autauga County, AL
3    01003 Baldwin County, AL
4    01005 Barbour County, AL

我不知道如何使用df.row。Str[:]来实现拆分行单元格的目标。我可以使用df['fips'] = hello添加一个新列,并用hello填充它。什么好主意吗?

         fips       row
0    00000 UNITED STATES
1    01000 ALABAMA 
2    01001 Autauga County, AL
3    01003 Baldwin County, AL
4    01005 Barbour County, AL

当前回答

使用df。赋值以创建一个新的df。参见https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.html

split = df_selected['name'].str.split(',', 1, expand=True)
df_split = df_selected.assign(first_name=split[0], last_name=split[1])
df_split.drop('name', 1, inplace=True)

或者以方法链的形式:

df_split = (df_selected
            .assign(list_col=lambda df: df['name'].str.split(',', 1, expand=False),
                    first_name=lambda df: df.list_col.str[0],
                    last_name=lambda df: df.list_col.str[1])
            .drop(columns=['list_col']))

其他回答

我发现没人用切片法,所以我把2美分写在这里。

df["<col_name>"].str.slice(stop=5)
df["<col_name>"].str.slice(start=6)

该方法将创建两个新列。

你可以使用正则表达式模式将不同的部分非常整齐地提取出来:

In [11]: df.row.str.extract('(?P<fips>\d{5})((?P<state>[A-Z ]*$)|(?P<county>.*?), (?P<state_code>[A-Z]{2}$))')
Out[11]: 
    fips                    1           state           county state_code
0  00000        UNITED STATES   UNITED STATES              NaN        NaN
1  01000              ALABAMA         ALABAMA              NaN        NaN
2  01001   Autauga County, AL             NaN   Autauga County         AL
3  01003   Baldwin County, AL             NaN   Baldwin County         AL
4  01005   Barbour County, AL             NaN   Barbour County         AL

[5 rows x 5 columns]

要解释有点长的正则表达式:

(?P<fips>\d{5})

匹配五个数字(\d),并将其命名为“fips”。

下一部分:

((?P<state>[A-Z ]*$)|(?P<county>.*?), (?P<state_code>[A-Z]{2}$))

(|)做以下两件事之一:

(?P<state>[A-Z ]*$)

匹配任何大写字母或空格([A-Z])的数字(*),并将此“状态”命名在字符串($)结束之前,

or

(?P<county>.*?), (?P<state_code>[A-Z]{2}$))

匹配任何其他(.*) 一个逗号和一个空格 匹配字符串($)结尾前的两位数字state_code。

在这个例子中: 请注意,前两行命中了“州”(将NaN留在县和state_code列中),而最后三行命中了县和state_code(将NaN留在州列中)。

TL;博士版:

对于简单的情况:

我有一个文本列与分隔符,我想要两列

最简单的解决方案是:

df[['A', 'B']] = df['AB'].str.split(' ', 1, expand=True)

如果字符串的分割次数不一致,并且希望用None替换缺失的值,则必须使用expand=True。

请注意,在这两种情况下,.tolist()方法都是不必要的。zip()也不是。

详细:

Andy Hayden的解决方案非常出色地演示了str.extract()方法的强大功能。

但是对于对已知分隔符进行简单的分割(例如,用破折号分割或用空格分割),.str.split()方法就足够了1。它操作一个字符串列(Series),并返回一个列表列(Series):

>>> import pandas as pd
>>> df = pd.DataFrame({'AB': ['A1-B1', 'A2-B2']})
>>> df

      AB
0  A1-B1
1  A2-B2
>>> df['AB_split'] = df['AB'].str.split('-')
>>> df

      AB  AB_split
0  A1-B1  [A1, B1]
1  A2-B2  [A2, B2]

1:如果你不确定.str.split()的前两个参数是做什么的, 我推荐使用该方法的纯Python版本的文档。

但是你如何从:

包含两元素列表的列

to:

两列,每个列都包含列表的各自元素?

好了,我们需要仔细看看列的.str属性。

它是一个神奇的对象,用于收集将列中的每个元素视为字符串的方法,然后尽可能高效地在每个元素中应用各自的方法:

>>> upper_lower_df = pd.DataFrame({"U": ["A", "B", "C"]})
>>> upper_lower_df

   U
0  A
1  B
2  C
>>> upper_lower_df["L"] = upper_lower_df["U"].str.lower()
>>> upper_lower_df

   U  L
0  A  a
1  B  b
2  C  c

但它也有一个“索引”接口,用于通过索引获取字符串的每个元素:

>>> df['AB'].str[0]

0    A
1    A
Name: AB, dtype: object

>>> df['AB'].str[1]

0    1
1    2
Name: AB, dtype: object

当然,.str的这个索引接口并不真正关心它索引的每个元素是否实际上是一个字符串,只要它可以被索引,因此:

>>> df['AB'].str.split('-', 1).str[0]

0    A1
1    A2
Name: AB, dtype: object

>>> df['AB'].str.split('-', 1).str[1]

0    B1
1    B2
Name: AB, dtype: object

然后,利用Python元组解包可迭代对象就很简单了

>>> df['A'], df['B'] = df['AB'].str.split('-', 1).str
>>> df

      AB  AB_split   A   B
0  A1-B1  [A1, B1]  A1  B1
1  A2-B2  [A2, B2]  A2  B2

当然,通过拆分一列字符串来获得一个DataFrame是非常有用的,.str.split()方法可以用expand=True参数为你做这件事:

>>> df['AB'].str.split('-', 1, expand=True)

    0   1
0  A1  B1
1  A2  B2

所以,完成我们想要的另一种方法是:

>>> df = df[['AB']]
>>> df

      AB
0  A1-B1
1  A2-B2

>>> df.join(df['AB'].str.split('-', 1, expand=True).rename(columns={0:'A', 1:'B'}))

      AB   A   B
0  A1-B1  A1  B1
1  A2-B2  A2  B2

expand=True版本虽然更长,但与元组解包方法相比具有明显的优势。元组解包不能很好地处理不同长度的分割:

>>> df = pd.DataFrame({'AB': ['A1-B1', 'A2-B2', 'A3-B3-C3']})
>>> df
         AB
0     A1-B1
1     A2-B2
2  A3-B3-C3
>>> df['A'], df['B'], df['C'] = df['AB'].str.split('-')
Traceback (most recent call last):
  [...]    
ValueError: Length of values does not match length of index
>>> 

但是expand=True通过在没有足够“分割”的列中放置None来很好地处理它:

>>> df.join(
...     df['AB'].str.split('-', expand=True).rename(
...         columns={0:'A', 1:'B', 2:'C'}
...     )
... )
         AB   A   B     C
0     A1-B1  A1  B1  None
1     A2-B2  A2  B2  None
2  A3-B3-C3  A3  B3    C3

你可以使用str.split by空格(默认分隔符)和参数expand=True为DataFrame赋值给新列:

df = pd.DataFrame({'row': ['00000 UNITED STATES', '01000 ALABAMA', 
                           '01001 Autauga County, AL', '01003 Baldwin County, AL', 
                           '01005 Barbour County, AL']})
print (df)
                        row
0       00000 UNITED STATES
1             01000 ALABAMA
2  01001 Autauga County, AL
3  01003 Baldwin County, AL
4  01005 Barbour County, AL



df[['a','b']] = df['row'].str.split(n=1, expand=True)
print (df)
                        row      a                   b
0       00000 UNITED STATES  00000       UNITED STATES
1             01000 ALABAMA  01000             ALABAMA
2  01001 Autauga County, AL  01001  Autauga County, AL
3  01003 Baldwin County, AL  01003  Baldwin County, AL
4  01005 Barbour County, AL  01005  Barbour County, AL

修改,如果需要删除原始列datafframe .pop

df[['a','b']] = df.pop('row').str.split(n=1, expand=True)
print (df)
       a                   b
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

什么是一样的:

df[['a','b']] = df['row'].str.split(n=1, expand=True)
df = df.drop('row', axis=1)
print (df)

       a                   b
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

如果get错误:

#remove n=1 for split by all whitespaces
df[['a','b']] = df['row'].str.split(expand=True)

ValueError:列的长度必须与键的长度相同

你可以检查,它返回4列DataFrame,而不是只有2:

print (df['row'].str.split(expand=True))
       0        1        2     3
0  00000   UNITED   STATES  None
1  01000  ALABAMA     None  None
2  01001  Autauga  County,    AL
3  01003  Baldwin  County,    AL
4  01005  Barbour  County,    AL

那么解决方案是通过join追加新的DataFrame:

df = pd.DataFrame({'row': ['00000 UNITED STATES', '01000 ALABAMA', 
                           '01001 Autauga County, AL', '01003 Baldwin County, AL', 
                           '01005 Barbour County, AL'],
                    'a':range(5)})
print (df)
   a                       row
0  0       00000 UNITED STATES
1  1             01000 ALABAMA
2  2  01001 Autauga County, AL
3  3  01003 Baldwin County, AL
4  4  01005 Barbour County, AL

df = df.join(df['row'].str.split(expand=True))
print (df)

   a                       row      0        1        2     3
0  0       00000 UNITED STATES  00000   UNITED   STATES  None
1  1             01000 ALABAMA  01000  ALABAMA     None  None
2  2  01001 Autauga County, AL  01001  Autauga  County,    AL
3  3  01003 Baldwin County, AL  01003  Baldwin  County,    AL
4  4  01005 Barbour County, AL  01005  Barbour  County,    AL

与删除原始列(如果还有其他列):

df = df.join(df.pop('row').str.split(expand=True))
print (df)
   a      0        1        2     3
0  0  00000   UNITED   STATES  None
1  1  01000  ALABAMA     None  None
2  2  01001  Autauga  County,    AL
3  3  01003  Baldwin  County,    AL
4  4  01005  Barbour  County,    AL   

我更喜欢导出相应的pandas系列(即我需要的列),使用apply函数将列内容拆分为多个系列,然后将生成的列连接到现有的DataFrame。当然,源列应该被删除。

如。

 col1 = df["<col_name>"].apply(<function>)
 col2 = ...
 df = df.join(col1.to_frame(name="<name1>"))
 df = df.join(col2.toframe(name="<name2>"))
 df = df.drop(["<col_name>"], axis=1)

分割两个单词的字符串函数应该是这样的:

lambda x: x.split(" ")[0] # for the first element
lambda x: x.split(" ")[-1] # for the last element