我有一个数据帧有一个(字符串)列,我想把它分成两个(字符串)列,其中一个列标题为“fips”和另一个“行”
我的数据框架df看起来是这样的:
row
0 00000 UNITED STATES
1 01000 ALABAMA
2 01001 Autauga County, AL
3 01003 Baldwin County, AL
4 01005 Barbour County, AL
我不知道如何使用df.row。Str[:]来实现拆分行单元格的目标。我可以使用df['fips'] = hello添加一个新列,并用hello填充它。什么好主意吗?
fips row
0 00000 UNITED STATES
1 01000 ALABAMA
2 01001 Autauga County, AL
3 01003 Baldwin County, AL
4 01005 Barbour County, AL
使用df。赋值以创建一个新的df。参见https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.html
split = df_selected['name'].str.split(',', 1, expand=True)
df_split = df_selected.assign(first_name=split[0], last_name=split[1])
df_split.drop('name', 1, inplace=True)
或者以方法链的形式:
df_split = (df_selected
.assign(list_col=lambda df: df['name'].str.split(',', 1, expand=False),
first_name=lambda df: df.list_col.str[0],
last_name=lambda df: df.list_col.str[1])
.drop(columns=['list_col']))
也许有更好的方法,但这是一种方法:
row
0 00000 UNITED STATES
1 01000 ALABAMA
2 01001 Autauga County, AL
3 01003 Baldwin County, AL
4 01005 Barbour County, AL
df = pd.DataFrame(df.row.str.split(' ',1).tolist(),
columns = ['fips','row'])
fips row
0 00000 UNITED STATES
1 01000 ALABAMA
2 01001 Autauga County, AL
3 01003 Baldwin County, AL
4 01005 Barbour County, AL
使用df。赋值以创建一个新的df。参见https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.html
split = df_selected['name'].str.split(',', 1, expand=True)
df_split = df_selected.assign(first_name=split[0], last_name=split[1])
df_split.drop('name', 1, inplace=True)
或者以方法链的形式:
df_split = (df_selected
.assign(list_col=lambda df: df['name'].str.split(',', 1, expand=False),
first_name=lambda df: df.list_col.str[0],
last_name=lambda df: df.list_col.str[1])
.drop(columns=['list_col']))
没想到我还没见过这个。如果你只需要两段,我强烈推荐…
Series.str.partition
分区在分隔符上执行一次分割,通常性能相当好。
df['row'].str.partition(' ')[[0, 2]]
0 2
0 00000 UNITED STATES
1 01000 ALABAMA
2 01001 Autauga County, AL
3 01003 Baldwin County, AL
4 01005 Barbour County, AL
如果需要重命名行,
df['row'].str.partition(' ')[[0, 2]].rename({0: 'fips', 2: 'row'}, axis=1)
fips row
0 00000 UNITED STATES
1 01000 ALABAMA
2 01001 Autauga County, AL
3 01003 Baldwin County, AL
4 01005 Barbour County, AL
如果你需要把它连接回原来的,使用join或concat:
df.join(df['row'].str.partition(' ')[[0, 2]])
pd.concat([df, df['row'].str.partition(' ')[[0, 2]]], axis=1)
row 0 2
0 00000 UNITED STATES 00000 UNITED STATES
1 01000 ALABAMA 01000 ALABAMA
2 01001 Autauga County, AL 01001 Autauga County, AL
3 01003 Baldwin County, AL 01003 Baldwin County, AL
4 01005 Barbour County, AL 01005 Barbour County, AL