我有一个数据帧有一个(字符串)列,我想把它分成两个(字符串)列,其中一个列标题为“fips”和另一个“行”

我的数据框架df看起来是这样的:

          row
0    00000 UNITED STATES
1    01000 ALABAMA
2    01001 Autauga County, AL
3    01003 Baldwin County, AL
4    01005 Barbour County, AL

我不知道如何使用df.row。Str[:]来实现拆分行单元格的目标。我可以使用df['fips'] = hello添加一个新列,并用hello填充它。什么好主意吗?

         fips       row
0    00000 UNITED STATES
1    01000 ALABAMA 
2    01001 Autauga County, AL
3    01003 Baldwin County, AL
4    01005 Barbour County, AL

当前回答

也许有更好的方法,但这是一种方法:

                            row
    0       00000 UNITED STATES
    1             01000 ALABAMA
    2  01001 Autauga County, AL
    3  01003 Baldwin County, AL
    4  01005 Barbour County, AL
df = pd.DataFrame(df.row.str.split(' ',1).tolist(),
                                 columns = ['fips','row'])
   fips                 row
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

其他回答

我更喜欢导出相应的pandas系列(即我需要的列),使用apply函数将列内容拆分为多个系列,然后将生成的列连接到现有的DataFrame。当然,源列应该被删除。

如。

 col1 = df["<col_name>"].apply(<function>)
 col2 = ...
 df = df.join(col1.to_frame(name="<name1>"))
 df = df.join(col2.toframe(name="<name2>"))
 df = df.drop(["<col_name>"], axis=1)

分割两个单词的字符串函数应该是这样的:

lambda x: x.split(" ")[0] # for the first element
lambda x: x.split(" ")[-1] # for the last element
df[['fips', 'row']] = df['row'].str.split(' ', n=1, expand=True)

使用df。赋值以创建一个新的df。参见https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.assign.html

split = df_selected['name'].str.split(',', 1, expand=True)
df_split = df_selected.assign(first_name=split[0], last_name=split[1])
df_split.drop('name', 1, inplace=True)

或者以方法链的形式:

df_split = (df_selected
            .assign(list_col=lambda df: df['name'].str.split(',', 1, expand=False),
                    first_name=lambda df: df.list_col.str[0],
                    last_name=lambda df: df.list_col.str[1])
            .drop(columns=['list_col']))

也许有更好的方法,但这是一种方法:

                            row
    0       00000 UNITED STATES
    1             01000 ALABAMA
    2  01001 Autauga County, AL
    3  01003 Baldwin County, AL
    4  01005 Barbour County, AL
df = pd.DataFrame(df.row.str.split(' ',1).tolist(),
                                 columns = ['fips','row'])
   fips                 row
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

我发现没人用切片法,所以我把2美分写在这里。

df["<col_name>"].str.slice(stop=5)
df["<col_name>"].str.slice(start=6)

该方法将创建两个新列。